ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI FLO DI GOOGLE PLAY STORE DENGAN MENGGUNAKAN ALGORITMA NAIVE BAYES

Authors

  • Eti Kurniawati Program Studi Rekayasa Perangkat Lunak, STMIK IKMI Cirebon, Indonesia
  • Ade Irma Purnamasari STMIK IKMI CIREBON
  • Irfan Ali STMIK IKMI CIREBON
  • Rudi Kurniawan STMIK IKMI CIREBON
  • Odi Nurdiawan STMIK IKMI CIREBON

DOI:

https://doi.org/10.23960/jitet.v14i1.8776

Abstract Views: 87 File Views: 57

Keywords:

sentiment analysis; Flo application; Naive Bayes; text mining; mHealth.

Abstract

Abstrak. Penelitian ini bertujuan untuk menganalisis sentimen ulasan pengguna aplikasi Flo pada Google Play Store menggunakan algoritma Multinomial Naive Bayes. Flo merupakan aplikasi mobile health (mHealth) populer yang digunakan untuk memantau siklus menstruasi dan kesehatan reproduksi. Data dikumpulkan melalui web scraping dan menghasilkan 10.000 ulasan yang setelah pembersihan menjadi 6.908 data valid. Proses pra-pemrosesan meliputi case folding, cleaning, normalisasi, tokenisasi, stopword removal, dan stemming menggunakan Sastrawi. Pelabelan sentimen dilakukan secara semi-otomatis berbasis lexicon InSet dan rating. Ekstraksi fitur menggunakan CountVectorizer menghasilkan representasi Bag-of-Words sebagai input model. Hasil evaluasi menunjukkan bahwa algoritma Naive Bayes mencapai akurasi sebesar 73,6% dengan nilai precision, recall, dan F1-score yang seimbang pada tiga kelas sentimen. Temuan ini menunjukkan bahwa Naive Bayes efektif digunakan dalam mengolah ulasan teks pendek dan informal berbahasa Indonesia. Penelitian ini berkontribusi dalam pemanfaatan machine learning untuk analisis sentimen aplikasi mHealth serta menyediakan wawasan yang dapat digunakan pengembang untuk meningkatkan kualitas layanan aplikasi Flo.

Abstract. This study aims to analyze user reviews of the Flo application on Google Play Store using the Multinomial Naive Bayes algorithm. Flo is a popular mobile health (mHealth) application for tracking menstrual cycles and reproductive health. Data were collected using web scraping, obtaining 10,000 initial reviews, with 6,908 valid reviews after cleaning. Preprocessing included case folding, cleaning, normalization, tokenization, stopword removal, and stemming using Sastrawi. Sentiment labeling was performed semi-automatically using the InSet lexicon and rating-based rules. Feature extraction used CountVectorizer with the Bag-of-Words approach. The evaluation shows that Naive Bayes achieved an accuracy of 73.6% with balanced precision, recall, and F1-score across sentiment classes. These results indicate that Naive Bayes is effective for processing short and informal Indonesian text reviews. This research contributes to the application of machine learning in mHealth sentiment analysis and provides insights for developers to improve the quality of the Flo application.

Downloads

Download data is not yet available.

References

Agastya, I. M. (2022). The Influence of the Indonesian Sastrawi Stemmer on Sentiment Analysis. Indonesian NLP Conference Proceedings.

Ashbaugh, L., & Zhang, Y. (2024). A Comparative Study of Sentiment Analysis on Customer Reviews Using Machine Learning and Deep Learning. Computers. https://doi.org/10.3390/computers13120340

Ataei, P., Regula, S., Staegemann, D., & Malgaonkar, S. (2024). Filtering Useful App Reviews Using Naïve Bayes—Which Naïve Bayes? AI (Switzerland), 5(4), 2237–2259. https://doi.org/10.3390/ai5040110

Ayash, L., Khan, H., & Mustafa, R. (2025). Advancements in Feature Selection and Extraction Methods in Text Mining: A Unified Conceptual Framework. SN Applied Sciences. https://doi.org/10.1007/s42452-025-07587-w

Çaylak, P. Ç., Kayakuş, M., Eksili, N., Yiğit Açikgöz, F., Coşkun, A. E., Ichimov, M. A. M., & Moiceanu, G. (2024). Analysing Online Reviews Consumers’ Experiences of Mobile Travel Applications with Sentiment Analysis and Topic Modelling: The Example of Booking and Expedia. Applied Sciences (Switzerland), 14(24). https://doi.org/10.3390/app142411800

Dewi, C., Chen, R. C., Christanto, H. J., & Cauteruccio, F. (2023). Multinomial Naïve Bayes Classifier for Sentiment Analysis of Internet Movie Database. Vietnam Journal of Computer Science, 10(4), 485–498. https://doi.org/10.1142/S2196888823500100

Duei Putri, D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1). https://doi.org/10.23960/jitet.v10i1.2262

El Majid, A. U., & Nuari, R. (2025). Performance Comparison of BERT Metrics and Classical Machine Learning Models for Sentiment Analysis. INOVTEK Polbeng – Seri Informatika. https://doi.org/10.35314/wmh3rg23

Fadhil, M., & Schueller, S. M. (2022). mHealth Solutions for Mental Health Screening and Diagnosis: A Review of App User Perspectives. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2022.857304

Ghatora, P. S., Hosseini, S. E., Pervez, S., Iqbal, M. J., & Shaukat, N. (2024). Sentiment Analysis of Product Reviews Using Machine Learning and Pre-Trained LLM. Big Data and Cognitive Computing, 8(12). https://doi.org/10.3390/bdcc8120199

Haggag, O., Grundy, J., Abdelrazek, M., & Haggag, S. (2022). A large scale analysis of mHealth app user reviews. Empirical Software Engineering, 27(7). https://doi.org/10.1007/s10664-022-10222-6

Jim, J. R., Talukder, M. A. R., Malakar, P., Kabir, M. M., Nur, K., & Mridha, M. F. (2024). Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal, 6, 100059. https://doi.org/10.1016/j.nlp.2024.100059

Mao, Y., Liu, Q., & Zhang, Y. (2024). Sentiment Analysis Methods, Applications, and Challenges: A Systematic Literature Review. Journal of King Saud University – Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2024.102048

Mercha, E. M., & Benbrahim, H. (2023). Machine Learning and Deep Learning for Sentiment Analysis Across Languages: A Survey. Neurocomputing. https://doi.org/10.1016/j.neucom.2023.02.015

Mihany, F. A., Galal-Edeen, G. H., Hassanein, E. E., & Moussa, H. (2025). Data-Driven Requirements Elicitation from App Reviews Framework Based on BERT. Applied Sciences (Switzerland), 15(17). https://doi.org/10.3390/app15179709

Swaminathan, S., & al., et. (2024). Confusion Matrix–Based Performance Evaluation Metrics. African Journal of Biomedical Research, 27(4S). https://doi.org/10.53555/AJBR.v27i4S.4345

Downloads

Published

2026-01-17

How to Cite

Kurniawati, E., Irma Purnamasari, A., Ali, I. ., Kurniawan, R., & Nurdiawan, O. . (2026). ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI FLO DI GOOGLE PLAY STORE DENGAN MENGGUNAKAN ALGORITMA NAIVE BAYES. Jurnal Informatika Dan Teknik Elektro Terapan, 14(1). https://doi.org/10.23960/jitet.v14i1.8776

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2