ANALISIS SENTIMEN ULASAN APLIKASI BANK JAGO MENGGUNAKAN SUPPORT VECTOR MACHINE DAN NEURAL NETWORK
DOI:
https://doi.org/10.23960/jitet.v14i1.8775Abstract Views: 57 File Views: 31
Keywords:
Sentiment Analysis, Bank Jago, Support vector Machine, Neural Network, Bag-of-words.Abstract
Abstrak. Pertumbuhan layanan perbankan digital di Indonesia menjadikan ulasan pengguna pada Google Play Store sebagai sumber penting untuk mengevaluasi kualitas aplikasi, termasuk Bank Jago. Namun, ulasan tersebut bersifat tidak terstruktur, informal, dan mengandung noise sehingga menyulitkan analisis sentimen. Penelitian ini bertujuan memberikan gambaran objektif kecenderungan opini pengguna serta membandingkan kinerja algoritma Support Vector Machine (SVM) dan Neural Network (MLPClassifier). Sebanyak 10.000 ulasan dikumpulkan melalui scraping dan direduksi menjadi 7.946 ulasan setelah penghapusan duplikasi. Data diproses melalui tahapan preprocessing meliputi cleaning, case folding, normalisasi slang, tokenisasi, stopword removal, dan stemming. Pelabelan sentimen dilakukan menggunakan lexicon InSet, sedangkan ekstraksi fitur menggunakan CountVectorizer berbasis Bag-of-Words. Hasil penelitian menunjukkan bahwa SVM memperoleh akurasi tertinggi sebesar 91,2%, lebih unggul dibandingkan Neural Network dengan akurasi 89,8%. Temuan ini menegaskan bahwa pemilihan preprocessing dan representasi fitur yang tepat berperan penting dalam meningkatkan performa analisis sentimen pada ulasan aplikasi perbankan digital.
Abstract. The growth of digital banking services in Indonesia has made user reviews on the Google Play Store an important source for evaluating application quality, including Bank Jago. However, these reviews are unstructured, informal, and noisy, creating challenges for sentiment analysis. This study aims to provide an objective overview of user sentiment and to compare the performance of Support Vector Machine (SVM) and Neural Network (MLPClassifier). A total of 10,000 reviews were collected through scraping and reduced to 7,946 reviews after duplicate removal. The data were processed through preprocessing stages including cleaning, case folding, slang normalization, tokenization, stopword removal, and stemming. Sentiment labeling was conducted using the InSet lexicon, while feature extraction employed a Bag-of-Words approach with CountVectorizer. The results show that SVM achieved the highest accuracy of 91.2%, outperforming the Neural Network model with 89.8%. These findings highlight the importance of appropriate preprocessing and feature representation for improving sentiment analysis performance in digital banking application reviews.
Downloads
References
T. Mahmood, S. Naseem, R. Ashraf, M. Asif, M. Umair, and M. Shah, “Recognizing factors effecting the use of mobile banking apps through sentiment and thematic analysis on user reviews,” Neural Comput. Appl., vol. 35, no. 27, pp. 19885–19897, Sep. 2023, doi: 10.1007/s00521-023-08827-z.
A. Chinnalagu and A. K. Durairaj, “Context-based sentiment analysis on customer reviews using machine learning linear models,” PeerJ Comput. Sci., vol. 7, p. e813, Dec. 2021, doi: 10.7717/peerj-cs.813.
P. Ç. Çaylak et al., “Analysing Online Reviews Consumers’ Experiences of Mobile Travel Applications with Sentiment Analysis and Topic Modelling: The Example of Booking and Expedia,” Appl. Sci., vol. 14, no. 24, p. 11800, Dec. 2024, doi: 10.3390/app142411800.
M. Siino, I. Tinnirello, and M. La Cascia, “Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers,” Inf. Syst., vol. 121, p. 102342, Mar. 2024, doi: 10.1016/j.is.2023.102342.
M. A. Palomino and F. Aider, “Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis,” Appl. Sci., vol. 12, no. 17, p. 8765, Aug. 2022, doi: 10.3390/app12178765.
V. Nurcahyawati and Z. Mustaffa, “Improving sentiment reviews classification performance using support vector machine-fuzzy matching algorithm,” Bull. Electr. Eng. Informatics, vol. 12, no. 3, pp. 1817–1824, Jun. 2023, doi: 10.11591/eei.v12i3.4830.
N. A. Nevrada and M. A. Syaputra, “Sentiment Analysis of Telegram App Reviews on Google Play Store Using the Support Vector Machine (SVM) Algorithm,” J. Appl. Informatics Comput., vol. 9, no. 1, pp. 96–105, Jan. 2025, doi: 10.30871/jaic.v9i1.8851.
L. Ashbaugh and Y. Zhang, “A Comparative Study of Sentiment Analysis on Customer Reviews Using Machine Learning and Deep Learning,” Computers, vol. 13, no. 12, p. 340, Dec. 2024, doi: 10.3390/computers13120340.
R. P. Setiawan, B. Irawan, and W. P. Prihartono, “ANALISIS SENTIMEN ULASAN GROWTOPIA DI GOOGLE PLAY STORE MENGGUNAKAN NAÏVE BAYES CLASSIFIER UNTUK IDENTIFIKASI KEBUTUHAN PENGGUNA,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 2, pp. 1150–1159, Apr. 2025, doi: 10.23960/jitet.v13i2.6415.
A. M. van der Veen and E. Bleich, “The advantages of lexicon-based sentiment analysis in an age of machine learning,” PLoS One, vol. 20, no. 1, p. e0313092, Jan. 2025, doi: 10.1371/journal.pone.0313092.
S. Al-Hadhrami, T. Vinko, T. Al-Hadhrami, F. Saeed, and S. N. Qasem, “Deep learning-based method for sentiment analysis for patients’ drug reviews,” PeerJ Comput. Sci., vol. 10, p. e1976, Apr. 2024, doi: 10.7717/peerj-cs.1976.
J. Opitz, “A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice,” Trans. Assoc. Comput. Linguist., vol. 12, pp. 820–836, Jun. 2024, doi: 10.1162/tacl_a_00675.
P. P. Putra, “Optimizing Sentiment Analysis on Imbalanced Hotel Review Data Using SMOTE and Ensemble Machine Learning Techniques,” J. Appl. Data Sci., vol. 6, no. 2, pp. 921–935, May 2025, doi: 10.47738/jads.v6i2.618.
Y. C. Hua, P. Denny, J. Wicker, and K. Taskova, “A systematic review of aspect-based sentiment analysis: domains, methods, and trends,” Artif. Intell. Rev., vol. 57, no. 11, p. 296, Sep. 2024, doi: 10.1007/s10462-024-10906-z.
B. AlBadani, R. Shi, and J. Dong, “A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM,” Appl. Syst. Innov., vol. 5, no. 1, p. 13, Jan. 2022, doi: 10.3390/asi5010013.
E. Hokijuliandy, H. Napitupulu, and Firdaniza, “Application of SVM and Chi-Square Feature Selection for Sentiment Analysis of Indonesia’s National Health Insurance Mobile Application,” Mathematics, vol. 11, no. 17, p. 3765, Sep. 2023, doi: 10.3390/math11173765.
S. Z. Malik et al., “Attention-aware with stacked embedding for sentiment analysis of student feedback through deep learning techniques,” PeerJ Comput. Sci., vol. 10, p. e2283, Sep. 2024, doi: 10.7717/peerj-cs.2283.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



