DEEP LEARNING ALGORITMA YOLOV8 UNTUK MENINGKATKAN ANALISIS KEPADATAN LALU LINTAS
DOI:
https://doi.org/10.23960/jitet.v13i2.5749Abstract Views: 420 File Views: 465
Abstract
Kemacetan lalu lintas merupakan salah satu masalah serius di berbagai kota besar. Diperlukan sebuah algoritma deteksi objek secara real-time yaitu YOLOv8 . Namun, untuk mengeksplorasi efektivitas algoritma YOLOv8 (You Only Look Once version 8) dalam mendeteksi dan menganalisis kemacetan lalu lintas. Maka dilakukan pemadaman pola kemacetan, menghitung volume lalu lintas, serta memberikan informasi kondisi lalu kecepatan untuk mengurangi kemacetan. Data yang digunakan meliputi dataset sekunder dari website open source Roboflow dan data primer hasil observasi langsung di Jalan Perum Arum Sari Angsana 2, Kecomberan, Kecamatan Talun, Kabupaten Cirebon, Jawa Barat 45171, Indonesia. Proses penelitian mencakup pelatihan model YOLOv8 menggunakan dataset yang telah diberi anotasi untuk mendeteksi kendaraan, dan menghitung volume kendaraan yang ada. Setelah pelatihan, model diuji menggunakan dataset video untuk memutar performanya dalam kondisi nyata, mencakup berbagai waktu dan kondisi pencahayaan, seperti pagi, dan siang. Hasil penelitian menunjukkan bahwa model YOLOv8 mencapai tingkat akurasi deteksi yang tinggi, dengan presisi sebesar 0.930, recall 0.919, F1-score 0.930, mAP50 0.975, dan mAP50-95 0.748. Model ini mampu mendeteksi dan menghitung jumlah kendaraan secara akurat pada kondisi lalu lintas, baik padat maupun lancar. Temuan ini membuktikan potensi besar algoritma YOLOv8 dalam penerapan teknologi berbasis kecerdasan buatan untuk pengelolaan lalu lintas perkotaan maupun pemukiman.Downloads
Download data is not yet available.
Downloads
Published
2025-04-10
How to Cite
Hidayattullah, R., Suarna, N., Ali, I., & Efendi, D. I. (2025). DEEP LEARNING ALGORITMA YOLOV8 UNTUK MENINGKATKAN ANALISIS KEPADATAN LALU LINTAS. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.5749
Issue
Section
Articles