STUDI KOMPARASI ALGORITMA RANDOM FOREST CLASSIFIER DAN SUPPORT VECTOR MACHINE DALAM PREDIKSI PENYAKIT JANTUNG

Authors

  • Nur Halizah Alfajr Universitas Singaperbangsa Karawang
  • Garno Garno Universitas Singaperbangsa Karawang
  • Dadang Yusup Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.23960/jitet.v13i3.6569

Abstract Views: 90 File Views: 88

Abstract

Heart disease is a non-communicable disease with a high mortality rate both globally and in Indonesia. According to WHO, around 17.9 million deaths occur each year due to cardiovascular diseases. Early prediction is crucial to reducing mortality and improving life expectancy. This study compares the performance of machine learning algorithms Random Forest Classifier and Support Vector Machine in predicting heart disease. The dataset consists of 5432 medical records from cardiac outpatients at RSUD Kabupaten Bekasi in 2024, with two classes (labeled 1 (heart disease) = 3068 and labeled 0 (non-heart disease) = 2364). Models were developed using the Knowledge Discovery in Databases (KDD) approach. Evaluation results show that the Support Vector Machine model achieved the best performance compared to Random Forest Classifier with 65% accuracy, 70% precision, 68% recall, and 64% f-measure. Cross-validation and ROC analysis also indicated that Support Vector Machine obtained the highest AUC score, ranging from 0.67 to 0.68, which is categorized as poor classification.

Downloads

Download data is not yet available.

References

A. Fitri et al., “Pengukuran Kinerja Model Klasifikasi dengan Data Oversampling pada Algoritma Supervised Learning untuk Penyakit Jantung,” Computer Science (CO-SCIENCE), vol. 4, no. 1, pp. 62–70, Jan. 2024.

S. N. N. Arif, A. M. Siregar, S. Faisal, and A. R. Juwita, “Klasifikasi Penyakit Serangan Jantung Menggunakan Metode Machine Learning K-Nearest Neighbors (KNN) dan Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 3, pp. 1617–1626, Jul. 2024.

I. S. Sholihah, N. Wirawan, Y. Rohyadi, and M. I. A. Kusuma, “HUBUNGAN JARAK TEMPAT TINGGAL, ALAT TRANSPORTASI, SERTA PERSEPSI PASIEN TERHADAP KETERLAMBATAN PASIEN KE INSTALASI GAWAT DARURAT PADA PASIEN PENYAKIT JANTUNG KORONER,” Jurnal Keperawatan ’Aisyiyah, vol. 8, no. 1, pp. 7–15, 2021.

A. S. Aulia, “Implementasi Ensemble Learning Menggunakan Algoritma SVM dan ADABOOST Untuk Memprediksi Penyakit Jantung,” Bachelor’s thesis, Fakultas Sains dan Teknologi UIN Syarif HIdayatullah Jakarta, 2024.

S. Das, K. Bhattacharyya, and S. Sarkar, “Performance Analysis of Logistic Regression, Naive Bayes, KNN, Decision Tree, Random Forest and SVM on Hate Speech Detection from Twitter,” International Research Journal of Innovations in Engineering and Technology, vol. 07, no. 03, pp. 24–28, 2023.

D. Kusumaningrum and E. M. Imah, “STUDI KOMPARASI ALGORITMA KLASIFIKASI MENTAL WORKLOAD BERDASARKAN SINYAL EEG,” Jurnal Sistem Cerdas, vol. 3, no. 2, pp. 133–143, 2020.

M. Salsabil, N. L. Azizah, and A. Eviyanti, “Implementasi Data Mining Dalam Melakukan Prediksi Penyakit Diabetes Menggunakan Metode Random Forest Dan Xgboost,” Jurnal Ilmiah Komputasi, vol. 23, no. 1, pp. 51–58, Mar. 2024.

M. R. Haditama, “Analisis dan pembuatan dashboard prediksi kelulusan mahasiswa menggunakan metode random forest, naïve bayes dan support vector machine,” Bachelor’s thesis, Fakultas Sains dan Teknologi UIN Syarif HIdayatullah Jakarta, 2023.

N. H. Alfajr and S. Defiyanti, “PREDIKSI PENYAKIT JANTUNG MENGGUNAKAN METODE RANDOM FOREST DAN PENERAPAN PRINCIPAL COMPONENT ANALYSIS (PCA),” JITET (Jurnal Informatika dan Teknik Elektro Terapan), vol. 12, no. 3S1, pp. 3457–3464, Oct. 2024.

E. Amrin, R. Rismawati, G. Gosro, and A. Asriany, “Studi Komparasi Layanan Fintech Dalam Meningkatkan Keuangan Inklusif Pada Umkm Di Kota Palopo,” Ecobisma (Jurnal Ekonomi, Bisnis Dan Manajemen), vol. 9, no. 2, pp. 114–125, 2022.

S. A. Putri, N. Selayanti, M. Kristanaya, M. P. Azzahra, M. G. Navsih, and K. M. Hindrayani, “Penerapan Machine Learning Algoritma Random Forest Untuk Prediksi Penyakit Jantung,” Prosiding Seminar Nasional Sains Data, vol. 4, no. 1, pp. 895–906, 2024.

N. Nuraeni, “Klasifikasi Data Mining Untuk Prediksi Penyakit Kardiovaskular,” Jurnal TEKINKOM, vol. 7, no. 1, pp. 161–170, 2024.

R. Hidayat, Y. Saputra Sy, T. Sujana, M. Husnah, H. T. Saputra, and F. Okmayura, “Implementasi Machine Learning Untuk Prediksi Penyakit Jantung Menggunakan Algoritma Support Vector Machine,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 5, no. 2, pp. 161–168, 2024.

M. Muttaqin et al., Pengenalan Data Mining, 1st ed. Yayasan Kita Menulis, 2023.

Downloads

Published

2025-07-14

How to Cite

Alfajr, N. H., Garno, G., & Yusup, D. (2025). STUDI KOMPARASI ALGORITMA RANDOM FOREST CLASSIFIER DAN SUPPORT VECTOR MACHINE DALAM PREDIKSI PENYAKIT JANTUNG. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3). https://doi.org/10.23960/jitet.v13i3.6569

Issue

Section

Articles