PREDIKSI PENYAKIT JANTUNG MENGGUNAKAN METODE RANDOM FOREST DAN PENERAPAN PRINCIPAL COMPONENT ANALYSIS (PCA)

Authors

  • Nur Halizah Alfajr Universitas Singaperbangsa Karawang
  • Sofi Defiyanti Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.23960/jitet.v12i3S1.5055

Abstract Views: 894 File Views: 1361

Abstract

Heart disease is a significant public health issue and the leading cause of death worldwide. Risk factors such as hypertension, diabetes, obesity, sedentary lifestyle, smoking, and genetic factors contribute to the development of heart disease. This study aims to develop a heart disease prediction model using the Random Forest method. The dataset used comes from the UCI Machine Learning Repository, containing data from 1026 patients with various health features. The methods used include the stages of knowledge discovery in databases (KDD), namely data selection, preprocessing, transformation, data mining, and evaluation. The study results show that the model with 100 decision trees achieved an accuracy of 0.9823. Further evaluation using the confusion matrix and classification report indicates that the Random Forest method provides 98% accuracy, 100% precision, 96% recall, and a 98% F1-score. In conclusion, the Random Forest method is effective in predicting heart disease, with features such as thal having a significant impact on model accuracy.

Downloads

Download data is not yet available.

References

“Cardiovascular disease (CVDs),” World Health Organization, 11 Juni 2021. [Online]. [Accessed 11 Juli 2024].

A. M. Rahim A., I. Y. R. Pratiwi and M. A. Fikri, “Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over-Sampling Technique Dan Random Forest Clasifier,” Indonesian Journal of Computer Science (IJCS), vol. 12, no. 5, pp. 2995-3011, 2023.

M. F. R. Aditya, N. L. Azizah and U. Indahyanti, “Prediksi Penyakit Hipertensi Menggunakan metode Decision Tree dan Random Forest,” Jurnal Ilmiah KOMPUTASI STI&K (Jikstik), vol. 23, no. 1, pp. 9-16, 2024.

M. F. Rahman, M. I. Darmawidjadja and D. Alamsah, “KLASIFIKASI UNTUK DIAGNOSA DIABETES MENGGUNAKAN METODE BAYESIAN REGULARIZATION NEURAL NETWORK (RBBN),” JURNAL INFORMATIKA, vol. 11, no. 1, pp. 36-45, 2017.

E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” BINA INSANI ICT JOURNAL, vol. 7, no. 2, pp. 156-165, 2020.

D. H. Depari, Y. Widiastiwi and M. M. Santoni, “Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung,” Jurnal Informatik (IFTK), vol. 18, no. 3, pp. 239-248, 2022.

E. and S. P. Tamba, “PREDIKSI PENYAKIT GAGAL JANTUNG DENGAN MENGGUNAKAN RANDOM FOREST,” JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima) , vol. 5, no. 2, pp. 176-181, 2022.

D. “Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining,” Journal of Applied Informatics and Computing (JAIC), vol. 4, no. 1, pp. 84-88, 2020.

B. I. Nugroho, Z. Ma'arif and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Metode Klasifikasi Untuk Menganalisa Penyalahgunaan Sosial Media,” Jurnal Sistem Informasi dan Teknologi Peradaban (JSITP), vol. 3, no. 2, pp. 46-51, 2022.

S. B. Kotsiantis, “Decision trees: a recent overview,” Artificial Intelligence Review, vol. 39, no. 4, pp. 261-283, 2013.

G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” Cogito Smart Journal, vol. 6, no. 2, pp. 167-178, 2020.

S. Pujiono, R. Astuti and F. M. Basysyar, “IMPLEMENTASI DATA MINING UNTUK MENENTUKAN POLA PENJUALAN PRODUK MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 615-620, 2024.

M. F. Y. Herjanto and C. , “ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI SIREKAP PADA PLAY STORE MENGGUNAKAN ALGORITMA RANDOM FOREST CLASSIFER,” JITET (Jurnal Informatika dan Teknik Elektro Terapan), vol. 12, no. 2, pp. 1204-1210, 2024.

Downloads

Published

2024-10-12

How to Cite

Alfajr, N. H., & Defiyanti, S. (2024). PREDIKSI PENYAKIT JANTUNG MENGGUNAKAN METODE RANDOM FOREST DAN PENERAPAN PRINCIPAL COMPONENT ANALYSIS (PCA). Jurnal Informatika Dan Teknik Elektro Terapan, 12(3S1). https://doi.org/10.23960/jitet.v12i3S1.5055

Issue

Section

Articles