TOWARDS OPTIMIZATION: A DATA-DRIVEN APPROACH USING K-MEDOIDS CLUSTERING ALGORITHM FOR REGIONAL EDUCATION QUALITY ASSESSMENT

Harun Al Azies, Fawwaz Atha Rohmatullah, Hani Brilianti Rochmanto, Devi Putri Isnarwaty

Abstract


This study applies the k-medoids clustering machine learning approach to assess regional clustering in Indonesia based on educational quality. Data on the quality of education, including indicators of school enrollment rate (APS), gross enrollment rate (APK), and pure participation rate (APM), is gathered and processed from all provinces in Indonesia. The k-medoids clustering technique is used to carry out the clustering process, while metrics like Dunn's index, connection coefficient, and silhouette score are used to evaluate the results. The study's findings indicate that three clusters are the ideal amount, with a silhouette score of 0.2388, a connectivity coefficient of 7.1405, and a Dunn's index value of 0.1651. Cluster homogeneity is likewise moderate, despite the regions' moderate distances from one another. This assessment offers a thorough understanding of Indonesia's educational quality clustering pattern, which can serve as a foundation for developing education strategies in different areas

Full Text:

PDF 2708-2717

References


Suharno, N. A. Pambudi, and B. Harjanto, “Vocational education in Indonesia: History, development, opportunities, and challenges,” Child Youth Serv Rev, vol. 115, p. 105092, Aug. 2020, doi: 10.1016/J.CHILDYOUTH.2020.105092.

S. J. Daniel, “Education and the COVID-19 pandemic,” Prospects (Paris), vol. 49, no. 1–2, pp. 91–96, Oct. 2020, doi: 10.1007/S11125-020-09464-3/METRICS.

M. Nurtanto, N. Kholifah, A. Masek, P. Sudira, and A. Samsudin, “Crucial Problems in Arranged the Lesson Plan of Vocational Teacher.,” International Journal of Evaluation and Research in Education, vol. 10, no. 1, pp. 345–354, Mar. 2021, doi: 10.11591/ijere.v10i1.20604.

N. Permatasari and A. Ubaidillah, “Estimation of Education Indicators in East Java Using Multivariate Fay-Herriot Model,” Proceedings of The International Conference on Data Science and Official Statistics, vol. 2021, no. 1, pp. 108–118, Jan. 2021, doi: 10.34123/ICDSOS.V2021I1.51.

S. Hanifah and A. H. Primandari, “Implementasi Metode K-Means Clustering dalam Pengelompokan Kabupaten/ Kota di Provinsi NTB Berdasarkan Indikator Pendidikan,” Emerging Statistics and Data Science Journal, vol. 1, no. 3, pp. 378–393, Dec. 2023, doi: 10.20885.10.

Z. HASAN, “The Effect of Human Development Index and Net Participation Rate on the Percentage of Poor Population: A Case Study in Riau Province, Indonesia,” International Journal of Islamic Economics and Finance Studies, vol. 8, no. 1, pp. 24–40, Mar. 2022, doi: 10.54427/IJISEF.964861.

K. A. Azhar, N. Iqbal, Z. Shah, and H. Ahmed, “Understanding high dropout rates in MOOCs – a qualitative case study from Pakistan,” Innovations in Education and Teaching International, Apr. 2023, doi: 10.1080/14703297.2023.2200753.

C. Lowder, C. O’Brien, D. Hancock, J. Hachen, and C. Wang, “High School Success: A Learning Strategies Intervention to Reduce Drop-Out Rates,” Urban Review, vol. 54, no. 4, pp. 509–530, Nov. 2022, doi: 10.1007/S11256-021-00624-Z/TABLES/4.

B. Lund and J. Ma, “A review of cluster analysis techniques and their uses in library and information science research: k-means and k-medoids clustering,” Performance Measurement and Metrics, vol. 22, no. 3, pp. 161–173, Nov. 2021, doi: 10.1108/PMM-05-2021-0026/FULL/XML.

I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Comput Sci, vol. 2, no. 3, pp. 1–21, May 2021, doi: 10.1007/S42979-021-00592-X/FIGURES/11.

S. A. Abbas, A. Aslam, A. U. Rehman, W. A. Abbasi, S. Arif, and S. Z. H. Kazmi, “K-Means and K-Medoids: Cluster Analysis on Birth Data Collected in City Muzaffarabad, Kashmir,” IEEE Access, vol. 8, pp. 151847–151855, 2020, doi: 10.1109/ACCESS.2020.3014021.

T. Widiyaningtyas, M. I. W. Prabowo, and M. A. M. Pratama, “Implementation of k-means clustering method to distribution of high school teachers,” International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), vol. 2017-December, Dec. 2017, doi: 10.1109/EECSI.2017.8239083.

S. K. Dini and A. Fauzan, “Clustering Provinces in Indonesia based on Community Welfare Indicators,” EKSAKTA: Journal of Sciences and Data Analysis, vol. 1, no. 1, pp. 56–63, Feb. 2020, doi: 10.20885/EKSAKTA.VOL1.ISS1.ART9.

M. R. Putri, G. S. Nugraha, and R. Dwiyansaputra, “Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Pendidikan Menggunakan Metode K-Means Clustering:,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 7, no. 1, pp. 76–83, Jun. 2023, doi: 10.29303/JCOSINE.V7I1.509.

M. Monica, N. U. Ayuningtiyas, H. Al Azies, M. Riefky, H. Khusna, and S. P. Rahayu, “Unsupervised Learning Approach for Evaluating the Impact of COVID-19 on Economic Growth in Indonesia,” Communications in Computer and Information Science, vol. 1489 CCIS, pp. 54–70, 2021, doi: 10.1007/978-981-16-7334-4_5/COVER.

L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization Techniques in Training DNNs: Methodology, Analysis and Application,” IEEE Trans Pattern Anal Mach Intell, vol. 45, no. 8, pp. 10173–10196, Aug. 2023, doi: 10.1109/TPAMI.2023.3250241.

A. V. Ushakov and I. Vasilyev, “Near-optimal large-scale k-medoids clustering,” Inf Sci (N Y), vol. 545, pp. 344–362, Feb. 2021, doi: 10.1016/J.INS.2020.08.121.

F. Zahra, A. Khalif, B. N. Sari, U. S. Karawang, J. H. Ronggo Waluyo, and T. Timur, “PENGELOMPOKAN TINGKAT KEMISKINAN DI SETIAP PROVINSI DI INDONESIA MENGGUNAKAN ALGORITMA K-MEDOIDS,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, pp. 2830–7062, Apr. 2024, doi: 10.23960/jitet.v12i2.4199.

A. J. Onumanyi, D. N. Molokomme, S. J. Isaac, and A. M. Abu-Mahfouz, “AutoElbow: An Automatic Elbow Detection Method for Estimating the Number of Clusters in a Dataset,” Applied Sciences 2022, Vol. 12, Page 7515, vol. 12, no. 15, p. 7515, Jul. 2022, doi: 10.3390/APP12157515.

T. M. Murugan and E. Baburaj, “Clustering and classification with inertia weight and elitism-based particle swarm optimization,” Pattern Analysis and Applications, vol. 24, no. 4, pp. 1605–1621, Jul. 2021, doi: 10.1007/S10044-021-01010-X/FIGURES/5.

J. Y. Kim, G. Park, S. A. Lee, and Y. Nam, “Analysis of Machine Learning-Based Assessment for Elbow Spasticity Using Inertial Sensors,” Sensors 2020, Vol. 20, Page 1622, vol. 20, no. 6, p. 1622, Mar. 2020, doi: 10.3390/S20061622.

B. W. Otok, A. Suharsono, Purhadi, R. E. Standsyah, and H. Al Azies, “Partitional Clustering of Underdeveloped Area Infrastructure with Unsupervised Learning Approach: A Case Study in the Island of Java, Indonesia,” Journal of Regional and City Planning, vol. 33, no. 2, pp. 177–196, Aug. 2022, doi: 10.5614/JPWK.2022.33.2.3.

T. Gupta and S. P. Panda, “Clustering Validation of CLARA and K-Means Using Silhouette DUNN Measures on Iris Dataset,” Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon 2019, pp. 10–13, Feb. 2019, doi: 10.1109/COMITCON.2019.8862199.

H. Habiballoh, A. Faqih, and T. Suprapti, “IMPLEMENTASI ALGORITMA K-MEANS DALAM MENGELOMPOKAN KABUPATEN/KOTA DI JAWA BARAT BERDASARKAN JENIS DAN JUMLAH POTENSI OBJEK DAYA TARIK WISATA,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, pp. 2830–7062, Apr. 2024, doi: 10.23960/JITET.V12I2.4270.

G. Ranganathan, “Hyperspectral Image Processing in Internet of Things model using Clustering Algorithm,” Journal of ISMAC, vol. 03, no. 02, pp. 163–175, 2021, doi: 10.36548/jismac.2021.2.008.

M. Shutaywi and N. N. Kachouie, “Silhouette Analysis for Performance Evaluation in Machine Learning with Applications to Clustering,” Entropy 2021, Vol. 23, Page 759, vol. 23, no. 6, p. 759, Jun. 2021, doi: 10.3390/E23060759.

F. Salsabila, T. Ridwan, U. Singaperbangsa Karawang, J. HSRonggo Waluyo, and T. Timur, “ANALISA VOLUME PENYEBARAN SAMPAH DI KARAWANG MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, pp. 2830–7062, Apr. 2024, doi: 10.23960/JITET.V12I2.4226.

K. R. Shahapure and C. Nicholas, “Cluster quality analysis using silhouette score,” Proceedings - 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020, pp. 747–748, Oct. 2020, doi: 10.1109/DSAA49011.2020.00096.

SchubertErich, “Stop using the elbow criterion for k-means and how to choose the number of clusters instead,” ACM SIGKDD Explorations Newsletter, vol. 25, no. 1, pp. 36–42, Jun. 2023, doi: 10.1145/3606274.3606278.

O. Pasin and S. Gonenc, “An investigation into epidemiological situations of COVID-19 with fuzzy K-means and K-prototype clustering methods,” Scientific Reports 2023 13:1, vol. 13, no. 1, pp. 1–11, Apr. 2023, doi: 10.1038/s41598-023-33214-y.

K. Gratsos, S. Ougiaroglou, and D. Margaris, “A Web Tool for K-means Clustering,” Lecture Notes in Networks and Systems, vol. 783 LNNS, pp. 91–101, 2023, doi: 10.1007/978-3-031-44097-7_9/COVER.

M. Z. Rodriguez et al., “Clustering algorithms: A comparative approach,” PLoS One, vol. 14, no. 1, p. e0210236, Jan. 2019, doi: 10.1371/JOURNAL.PONE.0210236.

T. Olivoto and A. D. C. Lúcio, “metan: An R package for multi-environment trial analysis,” Methods Ecol Evol, vol. 11, no. 6, pp. 783–789, Jun. 2020, doi: 10.1111/2041-210X.13384.

G. Brock, V. Pihur, S. Datta, and S. Datta, “clValid: An R Package for Cluster Validation,” J Stat Softw, vol. 25, no. 4, pp. 1–22, Mar. 2008, doi: 10.18637/JSS.V025.I04.




DOI: http://dx.doi.org/10.23960/jitet.v12i3.4862

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung
Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
Email: jitet@eng.unila.ac.id
Website : https://journal.eng.unila.ac.id/index.php/jitet

Copyright (c) Jurnal Informatika dan Teknik Elektro Terapan (JITET)
pISSN: 2303-0577   eISSN: 2830-7062