GWRPCA ALGORITHMIC FRAMEWORK: ANALYZING SPATIAL DYNAMICS OF POVERTY IN EAST JAVA PROVINCE

Harun Al Azies, Noval Ariyanto

Abstract


This study employs Regression Principal Component Analysis (RPCA) and Geographically Weighted Regression Principal Component Analysis (GWRPCA) algorithms to analyze poverty in East Java Province, using data from Statistics Indonesia (BPS). The research investigates regency/city-level poverty percentages and identifies influential factors such as education, literacy rates, housing conditions, and economic indicators. The results reveal that GWRPCA, with an 85.10% R2 value, outperforms RPCA, highlighting its effectiveness in capturing spatial diversity and providing a nuanced portrayal of poverty characteristics across regencies/cities in East Java. In conclusion, GWRPCA emerges as a powerful algorithmic tool for informing targeted poverty alleviation policies, offering insights into spatial variations. The study suggests future research directions to explore evolving spatial patterns and consider additional variables for a more comprehensive analysis. The findings emphasize the significance of spatial considerations in devising effective, context-specific strategies for each regency/city in East Java

Full Text:

PDF 126-136

References


A. Nugroho, H. Amir, I. Maududy, and I. Marlina, “Poverty eradication programs in Indonesia: Progress, challenges and reforms,” J Policy Model, vol. 43, no. 6, pp. 1204–1224, Nov. 2021, doi: 10.1016/J.JPOLMOD.2021.05.002.

I. Nuraini, R. Hidayat, and S. W. Sulistyono, “INTERACTION DETERMINING FACTORS FROM REGENCY / CITY REGION IN EAST JAVA,” Jurnal Ekonomi Pembangunan, vol. 17, no. 2, pp. 152–163, Jan. 2019, doi: 10.22219/JEP.V17I2.10998.

S. R. Putri, A. W. Wijayanto, and A. D. Sakti, “Developing Relative Spatial Poverty Index Using Integrated Remote Sensing and Geospatial Big Data Approach: A Case Study of East Java, Indonesia,” ISPRS International Journal of Geo-Information 2022, Vol. 11, Page 275, vol. 11, no. 5, p. 275, Apr. 2022, doi: 10.3390/IJGI11050275.

L. Anselin, “Spatial Models in Econometric Research,” Oxford Research Encyclopedia of Economics and Finance, Aug. 2021, doi: 10.1093/ACREFORE/9780190625979.013.643.

Y. Song, J. Wang, Y. Ge, and C. Xu, “An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data,” GIsci Remote Sens, vol. 57, no. 5, pp. 593–610, Jul. 2020, doi: 10.1080/15481603.2020.1760434.

W. Yang, M. Deng, J. Tang, and L. Luo, “Geographically weighted regression with the integration of machine learning for spatial prediction,” J Geogr Syst, vol. 25, no. 2, pp. 213–236, Apr. 2023, doi: 10.1007/S10109-022-00387-5/FIGURES/12.

A. D. Pratama, I. W. Suparta, and U. Ciptawaty, “Spatial Autoregressive Model and Spatial Patterns of Poverty In Lampung Province,” Eko-Regional: Jurnal Pembangunan Ekonomi Wilayah, vol. 16, no. 1, pp. 14–28, Mar. 2021, doi: 10.20884/1.ERJPE.2021.16.1.1776.

B. Tiyas Belantika et al., “Factors affecting poverty using a geographically weighted regression approach (case study of Java Island, 2020),” Optimum: Jurnal Ekonomi dan Pembangunan, vol. 13, no. 2, pp. 141–154, Nov. 2023, doi: 10.12928/OPTIMUM.V13I2.7993.

A. Shrestha and W. Luo, “Analysis of Groundwater Nitrate Contamination in the Central Valley: Comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression,” ISPRS International Journal of Geo-Information 2017, Vol. 6, Page 297, vol. 6, no. 10, p. 297, Sep. 2017, doi: 10.3390/IJGI6100297.

P. Das, “Linear Regression Model: Relaxing the Classical Assumptions,” Econometrics in Theory and Practice, pp. 109–135, 2019, doi: 10.1007/978-981-32-9019-8_4.

D. H. Maulud and A. Mohsin Abdulazeez, “A Review on Linear Regression Comprehensive in Machine Learning,” Journal of Applied Science and Technology Trends, vol. 1, no. 4, pp. 140–147, Dec. 2020, doi: 10.38094/jastt1457.

M. Gregorich, S. Strohmaier, D. Dunkler, and G. Heinze, “Regression with highly correlated predictors: Variable omission is not the solution,” Int J Environ Res Public Health, vol. 18, no. 8, p. 4259, Apr. 2021, doi: 10.3390/IJERPH18084259/S1.

D. C. Wheeler, “Geographically Weighted Regression,” Handbook of Regional Science: Second and Extended Edition: With 238 Figures and 78 Tables, pp. 1895–1921, Jan. 2021, doi: 10.1007/978-3-662-60723-7_77/COVER.

R. Cellmer, A. Cichulska, and M. Bełej, “Spatial Analysis of Housing Prices and Market Activity with the Geographically Weighted Regression,” ISPRS International Journal of Geo-Information 2020, Vol. 9, Page 380, vol. 9, no. 6, p. 380, Jun. 2020, doi: 10.3390/IJGI9060380.

O. Raza, M. A. Mansournia, A. Rahimi Foroushani, and K. Holakouie-Naieni, “Geographically weighted regression analysis: A statistical method to account for spatial heterogeneity,” Arch Iran Med, vol. 22, no. 3, pp. 155–160, Mar. 2019.

S. Sisman and A. C. Aydinoglu, “A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul,” Land use policy, vol. 119, p. 106183, Aug. 2022, doi: 10.1016/J.LANDUSEPOL.2022.106183.

G. T. Reddy et al., “Analysis of Dimensionality Reduction Techniques on Big Data,” IEEE Access, vol. 8, pp. 54776–54788, 2020, doi: 10.1109/ACCESS.2020.2980942.

N. B. Erichson, P. Zheng, K. Manohar, S. L. Brunton, J. N. Kutz, and A. Y. Aravkin, “Sparse Principal Component Analysis via Variable Projection,” https://doi.org/10.1137/18M1211350, vol. 80, no. 2, pp. 977–1002, Apr. 2020, doi: 10.1137/18M1211350.

J. Y. Le Chan et al., “Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review,” Mathematics 2022, Vol. 10, Page 1283, vol. 10, no. 8, p. 1283, Apr. 2022, doi: 10.3390/MATH10081283.

R. Zhao, L. Zhan, M. Yao, and L. Yang, “A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5,” Sustain Cities Soc, vol. 56, p. 102106, May 2020, doi: 10.1016/J.SCS.2020.102106.

E. May Mujiarti, A. Vickylia Roos, F. Fran, U. H. Tanjungpura Jl Hadari Nawawi, K. Pontianak, and P. Korespondensi, “Application of the PCA Method to Identify Factors Affecting Poverty Rates in West Kalimantan,” Jurnal Forum Analisis Statistik (FORMASI), vol. 3, no. 1, pp. 11–22, Jul. 2023, doi: 10.xxxxx/formasi.2021.1.1.1-12.

D. O. Mahara and A. Fauzan, “Impacts of Human Development Index and Percentage of Total Population on Poverty using OLS and GWR models in Central Java, Indonesia,” EKSAKTA: Journal of Sciences and Data Analysis, vol. 2, no. 2, pp. 142–154, Sep. 2021, doi: 10.20885/EKSAKTA.VOL2.ISS2.ART8.

X. He, X. Mai, and G. Shen, “Poverty and Physical Geographic Factors: An Empirical Analysis of Sichuan Province Using the GWR Model,” Sustainability 2021, Vol. 13, Page 100, vol. 13, no. 1, p. 100, Dec. 2020, doi: 10.3390/SU13010100.

A. Rinaldi et al., “Spatial Modeling for Poverty: The Comparison of Spatial Error Model and Geographic Weighted Regression,” Al-Jabar : Jurnal Pendidikan Matematika, vol. 12, no. 1, pp. 237–251, Jun. 2021, doi: 10.24042/AJPM.V12I1.8671.

L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization Techniques in Training DNNs: Methodology, Analysis and Application,” IEEE Trans Pattern Anal Mach Intell, vol. 45, no. 8, pp. 10173–10196, Aug. 2023, doi: 10.1109/TPAMI.2023.3250241.

J. I. Daoud, “Multicollinearity and Regression Analysis,” J Phys Conf Ser, vol. 949, no. 1, p. 012009, Dec. 2017, doi: 10.1088/1742-6596/949/1/012009.

N. Shrestha, “Detecting Multicollinearity in Regression Analysis,” Am J Appl Math Stat, vol. 8, no. 2, pp. 39–42, 2020, doi: 10.12691/ajams-8-2-1.

N. Martin, “Robust and efficient Breusch-Pagan test-statistic: an application of the beta-score Lagrange multipliers test for non-identically distributed individuals,” Jan. 2023, Accessed: Nov. 28, 2023. [Online]. Available: https://arxiv.org/abs/2301.07245v1

J. Karch, “Improving on adjusted R-squared,” Collabra Psychol, vol. 6, no. 1, Sep. 2020, doi: 10.1525/COLLABRA.343/114458.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput Sci, vol. 7, pp. 1–24, Jul. 2021, doi: 10.7717/PEERJ-CS.623/SUPP-1.

J. D. Rights and S. K. Sterba, “Quantifying explained variance in multilevel models: An integrative framework for defining R-squared measures,” Psychol Methods, vol. 24, no. 3, pp. 309–338, Jun. 2019, doi: 10.1037/MET0000184.




DOI: http://dx.doi.org/10.23960/jitet.v12i1.3945

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung
Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
Email: jitet@eng.unila.ac.id
Website : https://journal.eng.unila.ac.id/index.php/jitet

Copyright (c) Jurnal Informatika dan Teknik Elektro Terapan (JITET)
pISSN: 2303-0577   eISSN: 2830-7062