KLASIFIKASI TINGKAT KEPUASAN PELANGGAN SAT & SUN : THE ALMEATY SERVICE MENGGUNAKAN NAIVE BAYESKLASIFIKASI TINGKAT KEPUASAN PELANGGAN SAT & SUN : THE ALMEATY SERVICE MENGGUNAKAN NAIVE BAYES

Mariska Regina RahmaPutri, Dhian Satria Yudha Kartika, Seftin Fitri Ana Wati

Abstract


Sat & Sun: The Almeaty Service, a semi-cafe with a retro pop theme located in Surabaya, faces challenges in acquiring and effectively utilizing customer satisfaction data to enhance service and product development. To address this, a study was conducted to analyze customer sentiment based on their opinions. Using Python software, sentiment analysis was performed with classification using Naive Bayes. From a survey involving 1020 respondents, the results indicated the satisfaction levels of customers visiting Sat & Sun: The Almeaty Service using Multinomial Naive Bayes with an 80:20 split. The findings revealed that customer satisfaction with vehicle access (Q1) was classified with 80% accuracy, parking facilities (Q2) with 75%, cleanliness of the area (Q3) with 78%, staff service (Q4) with 76%, and product quality (Q5) with 76% accuracy. These insights aim to guide improvements in service delivery and product offerings to better meet customer expectations and enhance overall customer experience at Sat & Sun: The Almeaty Service.

Full Text:

PDF 2658-2663

References


Pradini, R. P., & Wempi, J. A. (2019). Desain Interior Sebagai Medium Komunikasi Nonverbal Restoran Eat Happens dalam Membentuk Reputasi. Profesi Humas, 3(2), 177–201.

Utami, L.D. Komparasi Algoritma Klasifikasi Text Mining Pada Review Restoran. INTI Nusa Mandiri, 14(2). 169-174.

Hermansyah, D., & Roessali, W. (2021). Analisis Faktor yang Mempengaruhi Kepuasan Konsumen Pada Pembelian Sawi Organik di Farmers Market Semarang Analyze of Factors Affecting Consumer Satisfaction on The Purchase of Organic Mustard Green in Famers Market Semarang Kepuasan konsumen mempunyai vi. 19(2), 177–188.

Sanrilla, S., Ransi, N., & Tenriawaru, A. T. A. (2022). Analisis Sentimen Masyarakat Terhadap Toko Online Aplikasi Shopee Menggunakan Metode Multinomial Naive Bayes. Jurnal Matematika Komputasi dan Statistika, 2(2), 68-75.

D.P. Utomo, and Mesran,"Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,"Jurnal Media Informatika Budidarma, Vol.4, No. 2, pp. 437-444, 2020.

Indrayuni, E. (2019). Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes. Jurnal Khatulistiwa Informatika, 7(1).

Nurian, Andriani. Padilah, Tesa Nur & Garno. Analisis Sentimen Terhadap Pelayanan Disdukcapil Karawang Menggunakan Naïve Bayes Classifier.JITET (Jurnal Informatika dan Teknik Elektro Terapan). 12(2)

Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan metode naïve bayes dan support vector machine pada analisis sentimen twitter. SMATIKA JURNAL: STIKI Informatika Jurnal, 10(02), 71-76.

Lubis, H., & Handayani, D. (2022). Analisis Tingkat Kepuasan Pelanggan Terhadap Penggunaan Gmalite dengan Penerapan Algoritma Naive Bayes pada MCDonalds Cibitung. Jurnal Sistem Informasi, 9(2), 119-128.

Sriyano, C. S., & Setiawan, E. B. (2021). Pendeteksian Berita Hoax Menggunakan Naive Bayes Multinomial Pada Twitter dengan Fitur Pembobotan TF-IDF. eProceeding of Engineering : Vol.8, No.2, 8(2), 3396–3405.

Nitami, M. T., & Februariyanti, H. (2022). Analisis Sentimen Ulasan Ekspedisi J&T Express Menggunakan Algoritma Naive Bayes. Jurnal Manajemen Informatika dan Sistem Informasi, 5(1), 20-29.

Suliztia, M. S., & Fauzan A. (2020). Comparing Naive Bayes, K-Nearest Neighbor, And Neural Network Classification Methods Of Seat Load Factor In Lombok Outbound Flights. Jurnal Matematika, Statistika, & Komputasi, 16(2), 187-198.




DOI: http://dx.doi.org/10.23960/jitet.v12i3.4844

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung
Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
Email: jitet@eng.unila.ac.id
Website : https://journal.eng.unila.ac.id/index.php/jitet

Copyright (c) Jurnal Informatika dan Teknik Elektro Terapan (JITET)
pISSN: 2303-0577   eISSN: 2830-7062