KLASIFIKASI PENERIMA BANTUAN DARI KEPEMILIKAN KARTU PELAKU UTAMA SEKTOR KELAUTAN DAN PERIKANAN DENGAN METODE SUPPORT VECTOR MACHINE

Authors

  • Nurdin Nurdin Universitas Malikussaleh

DOI:

https://doi.org/10.23960/jitet.v12i3.4507

Abstract Views: 228 File Views: 213

Abstract

Cards of Main Actors in the Maritime and Fisheries Sector (KUSUKA) is a card for key players in the marine and fisheries sector, plays a vital role in supporting the industry's growth. To enhance the effectiveness of aid distribution through KUSUKA, this study uses a Support Vector Machine (SVM) method in a web-based application for evaluation, considering factors such as income, ownership status, primary and additional professions, and business experience. Data is divided into training (320 samples) and testing (80 samples) sets with an 80:20 ratio. The developed model shows high classification accuracy: 90.299% for training data and 93.181% for testing data. The application classifies KUSUKA holders into two categories: 80% eligible and 20% not eligible for aid. The confusion matrix records 90.31% for training data and 88.75% for testing data. Precision is 88.65% for training data and 87.67% for testing data, while recall reaches 98.13% for training data and 100% for testing data. Income is the most influential factor in determining aid eligibility, followed by work experience and additional professions as supporting factors in the eligibility assessment process.

Downloads

Download data is not yet available.

References

Nurdin, M. Zarlis, Tulus, and S. Efendi, “Data Driven Optimization Approach to Fish Resources Supply Chain Planning in Aceh Province,” J. Phys. Conf. Ser., vol. 1255, no. 1, 2019, doi: 10.1088/1742-6596/1255/1/012081.

Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang dengan Menggunakan Metode Apriori pada Supermarket Sejahtera Lhoksumawe,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 4, pp. 77–80, 2018.

N. Nurdin, M. Zarlis, Tulus and S. Efendi, “Mixed Integer Linear Programming Model for Integrated Fish Supply Chain Planning” Journal of Theoretical and Applied Information Technology, Vol.98, No.12, 2020, pp. 2017-2028.

N. Nurdin, M. Zarlis, Tulus and S. Efendi, “Optimization and Computing Model of Fish Resource Supply Chain Distribution Network”, IOP Conf. Series: Journal of Physics: Conf. Series 1898 (2021) 012022, 2021.

N. Nurdin, F. Fajriana, M. Maryana, and A. Zanati, “Information System for Predicting Fisheries Outcomes Using Regression Algorithm Multiple Linear,” J. Informatics Telecommun. Eng., vol. 5, no. 2, pp. 247–258, 2022, doi: 10.31289/jite.v5i2.6023.

Z. Aulia, Risawandi, and L. Rosnita, “Application of the K-Nearest Neighbor Method to Determine Recipients of Non-Cash Food Assistance,” Jurnal Ilmu Komputer, vol. 16, no.2, pp. 115–126, 2023.

M. Qamal, I. Sahputra, N. Nurdin, M. Maryana, and M. Mukarramah, “Sistem Pendukung Keputusan Penentuan Penerimaan Bantuan PKH Menggunakan Metode Naïve Bayes,” TECHSI - J. Tek. Inform., vol. 14, no. 1, pp. 21, 2023, doi: 10.29103/techsi.v14i1.6960.

F. F. Ferdiansyah, B. Rahmat, and I. Yuniar, “Klasifikasi Dan Pengenalan Objek Ikan Menggunakan Algoritma Support Vector Machine (Svm),” J. Inform. dan Sist. Inf. ( JIFoSI ), vol. 1, no. 2, pp. 522–528, 2020.

A. M. Hidayat, M. Masitha, V. P. Siregar, and G. Winarso, “Object and Pixel Based Benthic Habitat Mapping in Shallow Water Opak Island using SPOT-7 Image ( Pemetaan Habitat Bentik Perairan Dangkal Pulau Opak Pemetaan Habitat Bentik Perairan Dangkal Pulau Opak Berbasis Objek Dan Piksel Menggunakan Citra Satelit SP,” Semin. Nas. Penginderaan Jauh, vol. 5, no. February 2022, p. 10, 2018.

N. W. Prabowo, V. P. Siregar, and S. B. Agus, “Classification of Benthic Habitat Based on Object With Support Vector Machines and Decision Tree Algorithm Using Spot-7 Multispectral Imagery in Harapan and Kelapa Island,” J. Ilmu dan Teknol. Kelaut. Trop., vol. 10, no. 1, pp. 123–134, 2018.

I. P. Monika and M. T. Furqon, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3165–3166, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

Y. Afrillia, L. Rosnita, and D. Siska, “Analisis Sentimen Pengguna Twitter Terhadap Isu Kesetaraan Gender Dalam Penerapan Permendikbudristek Nomor 30 Tahun 2021 …,” J. Informatics …, vol. 8, no. 2, pp. 93–98, 2022, [Online]. Available: http://jurnal.uui.ac.id/index.php/jics/article/view/2386%0Ahttp://jurnal.uui.ac.id/index.php/jics/article/viewFile/2386/1228

Downloads

Published

2024-08-03

How to Cite

Nurdin, N. (2024). KLASIFIKASI PENERIMA BANTUAN DARI KEPEMILIKAN KARTU PELAKU UTAMA SEKTOR KELAUTAN DAN PERIKANAN DENGAN METODE SUPPORT VECTOR MACHINE. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3). https://doi.org/10.23960/jitet.v12i3.4507

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>