OPTIMALISASI DISTRIBUSI MULTI-WAREHOUSE MELALUI INTEGRASI REINFORCEMENT LEARNING DAN BIG DATA BERBASIS SIMULASI MONTE CARLO

Authors

  • Edy Prayitno Universitas Teknologi Digital Indonesia

DOI:

https://doi.org/10.23960/jitet.v14i1.9035

Abstract Views: 40 File Views: 19

Keywords:

Distribusi multi-warehouse, Reinforcement learning, Big data analytics, Simulasi monte carlo, Optimasi logistik

Abstract

Multi-warehouse distribution faces persistent challenges such as stock imbalance, inefficient routing, and demand uncertainty that are difficult to address using conventional methods. This study develops an adaptive optimization model that integrates Reinforcement Learning, Big Data analytics, and Monte Carlo simulation to overcome these limitations. A simulation-based experimental design is employed using synthetic data representing a network of 10 warehouses, 200 customers, and stochastic demand patterns. A Deep Q-Network model is constructed to generate adaptive distribution policies, while Spark Streaming is used to simulate real-time demand updates. Evaluation across 1,000 Monte Carlo scenarios shows that the model maintains high distribution efficiency, improves demand prediction accuracy, and achieves more stable on-time delivery compared to static routing approaches. These findings demonstrate that integrating RL, Big Data, and stochastic simulation enhances system resilience under dynamic operational conditions. Theoretically, the study contributes to logistics and RL research by emphasizing the importance of Big-Data-driven state representation and probabilistic validation. Practically, the model offers potential for adoption by logistics companies seeking to improve cost efficiency, service quality, and operational adaptability. Overall, the study highlights the effectiveness of combining RL, Big Data, and Monte Carlo simulation as a computational approach for optimizing multi-warehouse distribution systems.

Downloads

Download data is not yet available.

References

T. D. Jaya Saputra and D. A. Widhi Yanti, “PENGARUH PERAN MANAJEMEN LOGISTIK UNTUK MENINGKATKAN EFISIENSI DISTRIBUSI DI PT BAHARI UTAMA SAMUDRA,” Referensi J. Ilmu Manaj. Dan Akunt., vol. 13, no. 1, pp. 112–115, June 2025, doi: 10.33366/ref.v13i1.6810.

S. Feng, “Navigating Modern Logistics: Innovations and Challenges in the Era of New Retail,” Adv. Econ. Manag. Polit. Sci., vol. 102, no. 1, pp. 258–262, July 2024, doi: 10.54254/2754-1169/102/2024ED0093.

I. Yu. Apostolov, “Warehouse Evolution in Contemporary Logistic Chains,” Curr. Econ. Trends, vol. 1, no. 2, pp. 60–80, May 2021, doi: 10.55030/2713-0266-2021-1-2-60-80.

L. Wang, G. Liu, and H. Hamam, “Enhancing Logistics Optimization: A Double-Layer Site-Selection Model Approach,” J. Organ. End User Comput., vol. 36, no. 1, pp. 1–15, May 2024, doi: 10.4018/JOEUC.344039.

Master of Science in Industrial Management, University of Central Missouri, Missouri, USA, M. U. Mojumder, Md. Nuruzzaman, and M.S in Manufacturing Engineering Technology, Western Illinois University, USA, “AI-Driven Optimization of Warehouse Layout and Material Handling: A Quantitative Study on Efficiency and Space Utilization,” Rev. Appl. Sci. Technol., vol. 04, no. 02, pp. 233–273, June 2025, doi: 10.63125/bgxb1z53.

J. Cestero, M. Quartulli, A. M. Metelli, and M. Restelli, “Storehouse: a Reinforcement Learning Environment for Optimizing Warehouse Management,” in 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy: IEEE, July 2022, pp. 1–9. doi: 10.1109/IJCNN55064.2022.9891985.

L. N. Raju Mudunuri, “Maximizing Every Square Foot: AI Creates the Perfect Warehouse Flow,” FMDB Trans. Sustain. Comput. Syst., vol. 2, no. 2, pp. 64–73, June 2024, doi: 10.69888/FTSCS.2024.000198.

A. J. Kaplan, “A stock redistribution model,” Nav. Res. Logist. Q., vol. 20, no. 2, pp. 231–239, June 1973, doi: 10.1002/nav.3800200203.

Ö. Özer and H. Xiong, “Stock positioning and performance estimation for distribution systems with service constraints,” IIE Trans., vol. 40, no. 12, pp. 1141–1157, Oct. 2008, doi: 10.1080/07408170802322960.

F. Nikkhoo, A. H. Kashan, E. Nikbakhsh, and B. Ostadi, “A multi-warehouse multi-period order picking system: A benders decomposition approach,” Apr. 10, 2024, In Review. doi: 10.21203/rs.3.rs-4196126/v1.

S. Kumabe, S. Shiroshita, T. Hayashi, and S. Maruyama, “Learning General Inventory Management Policy for Large Supply Chain Network,” 2022, arXiv. doi: 10.48550/ARXIV.2204.13378.

I. Nurkasanah, “Reinforcement Learning Approach for Efficient Inventory Policy in Multi-Echelon Supply Chain Under Various Assumptions and Constraints,” J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 2, p. 138, Oct. 2021, doi: 10.20473/jisebi.7.2.138-148.

H. Talebi, M. Khalaj, D. Jafari, P. Mousavi Ahranjani, and A. Hossein Kamali Dolatabadi, “Robust Optimization for Supply Chain with Routing Problem: A Learning-based Approach,” RAIRO - Oper. Res., Dec. 2024, doi: 10.1051/ro/2024230.

S. Barat et al., “Reinforcement Learning of Supply Chain Control Policy Using Closed Loop Multi-agent Simulation,” in Multi-Agent-Based Simulation XX, vol. 12025, M. Paolucci, J. S. Sichman, and H. Verhagen, Eds., in Lecture Notes in Computer Science, vol. 12025. , Cham: Springer International Publishing, 2020, pp. 26–38. doi: 10.1007/978-3-030-60843-9_3.

S. S. Bhattathiri, M. E. Kuhl, A. Tondwalkar, and A. Kwasinski, “Simulation Analysis of a Reinforcement-Learning-Based Warehouse Dispatching Method Considering due Date and Travel Distance,” in 2023 Winter Simulation Conference (WSC), San Antonio, TX, USA: IEEE, Dec. 2023, pp. 1830–1841. doi: 10.1109/WSC60868.2023.10407952.

J. Z. Jianjun Zhou, “Optimization Algorithm of Intelligent Warehouse Management System Based on Reinforcement Learning,” J. Electr. Syst., vol. 20, no. 1, pp. 219–231, Jan. 2024, doi: 10.52783/jes.678.

T. Gruchmann, J. Eiten, G. De La Torre, and A. Melkonyan, “Sustainable Logistics and Transportation Systems: Integrating Optimization and Simulation Analysis to Enhance Strategic Supply Chain Decision-Making,” in Innovative Logistics Services and Sustainable Lifestyles, A. Melkonyan and K. Krumme, Eds., Cham: Springer International Publishing, 2019, pp. 265–279. doi: 10.1007/978-3-319-98467-4_12.

K. Chicaiza Moncayo, A. Gomez Sanchez, P. Ruiz Anton, and L. Cevallos-Torres, “Modelo de simulación para la optimización del inventario de una distribuidora, basado en Simulación Monte Carlo y Algoritmo Metaheurístico Genético,” Ecuadorian Sci. J., vol. 3, no. 2, pp. 33–38, Sept. 2019, doi: 10.46480/esj.3.2.32.

A. Gokhale, C. Trasikar, A. Shah, A. Hegde, and S. R. Naik, “A Reinforcement Learning Approach to Inventory Management,” in Advances in Artificial Intelligence and Data Engineering, vol. 1133, N. N. Chiplunkar and T. Fukao, Eds., in Advances in Intelligent Systems and Computing, vol. 1133. , Singapore: Springer Nature Singapore, 2021, pp. 281–297. doi: 10.1007/978-981-15-3514-7_23.

N. N. Sultana, H. Meisheri, V. Baniwal, S. Nath, B. Ravindran, and H. Khadilkar, “Reinforcement Learning for Multi-Product Multi-Node Inventory Management in Supply Chains,” 2020, arXiv. doi: 10.48550/ARXIV.2006.04037.

V. Methuku, “Optimizing Drug Distribution Using Reinforcement Learning in Pharmaceutical Logistics,” Mar. 10, 2025, Public Health and Healthcare. doi: 10.20944/preprints202503.0638.v1.

Y. Yan, A. H. F. Chow, C. P. Ho, Y.-H. Kuo, Q. Wu, and C. Ying, “Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities,” Transp. Res. Part E Logist. Transp. Rev., vol. 162, p. 102712, June 2022, doi: 10.1016/j.tre.2022.102712.

Downloads

Published

2026-01-18

How to Cite

Prayitno, E. (2026). OPTIMALISASI DISTRIBUSI MULTI-WAREHOUSE MELALUI INTEGRASI REINFORCEMENT LEARNING DAN BIG DATA BERBASIS SIMULASI MONTE CARLO. Jurnal Informatika Dan Teknik Elektro Terapan, 14(1). https://doi.org/10.23960/jitet.v14i1.9035

Issue

Section

Articles