EVALUASI KLASSIFIKASI PENYAKIT DAUN TEH MENGGUNAKAN TRANSFER LEARNING EFFICIENTNETB0
DOI:
https://doi.org/10.23960/jitet.v14i1.8954Abstract Views: 62 File Views: 41
Keywords:
Penyakit Daun Teh, Convolutional Neural Network, EfficientNetB0, Transfer Learning, Klasifikasi CitraAbstract
Penelitian ini mengevaluasi performa model EfficientNetB0 berbasis transfer learning untuk deteksi dini penyakit daun teh. Dataset Tea Leaf Disease yang tersedia secara publik digunakan, terdiri dari 5.867 gambar daun teh dengan enam kelas, yaitu algal spot, brown blight, gray blight, healthy, helopeltis, dan red spot. Dataset dibagi menjadi data latih (70%), validasi (15%), dan uji (15%). Model dilatih selama 30 epoch dengan laju pembelajaran 1×10⁻⁴, kemudian dilakukan fine-tuning selama 15 epoch tambahan menggunakan laju pembelajaran 1×10⁻⁵ disertai augmentasi data yang intensif. Hasil pengujian pada data uji menunjukkan akurasi sebesar 97%, dengan nilai macro-averaged precision, recall, dan F1-score masing-masing mencapai 0,97. Analisis confusion matrix mengindikasikan tingkat kesalahan klasifikasi yang rendah, meskipun masih terjadi kesalahan pada kelas-kelas yang memiliki kemiripan visual tinggi, seperti brown blight dengan gray blight serta helopeltis dengan healthy. Hasil ini menunjukkan bahwa EfficientNetB0 memiliki akurasi dan efisiensi yang tinggi, sehingga berpotensi untuk diimplementasikan pada aplikasi mobile sebagai sistem pendukung deteksi dini penyakit daun teh bagi petani.
Downloads
References
I. S. Rahat, H. Ghosh, S. Dara, and S. Kant, “Towards precision agriculture tea leaf disease detection using CNNs and image processing,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-02378-0.
P. Wu, J. Liu, M. Jiang, L. Zhang, S. Ding, and K. Zhang, “Tea leaf disease recognition using attention convolutional neural network and handcrafted features,” Crop Prot., vol. 190, p. 107118, 2025, doi: 10.1016/j.cropro.2025.107118.
P. Bansal, Ranvijay, and M. Yadav, “Automatic detection of plant leaf diseases using deep learning,” in International Journal of Computing and Digital Systems, 2023, pp. 901–910. doi: 10.12785/ijcds/130171.
O. Ozturk, B. Sarica, and D. Z. Seker, “Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification,” Horticulturae, vol. 11, no. 4, p. 437, 2025, doi: 10.3390/horticulturae11040437.
W. Bao, Z. Zhu, G. Hu, X. Zhou, D. Zhang, and X. Yang, “UAV remote sensing detection of tea leaf blight based on DDMA-YOLO,” Comput. Electron. Agric., vol. 205, p. 107637, 2023, doi: 10.1016/j.compag.2023.107637.
D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, 2022, doi: 10.23960/jitet.v10i1.2262.
L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, p. 53, 2021, doi: 10.1186/s40537-021-00444-8.
J. A. Pandian, S. N. Nisha, K. Kanchanadevi, A. K. Pandey, and S. K. Rima, “Grey Blight Disease Detection on Tea Leaves Using Improved Deep Convolutional Neural Network,” Comput. Intell. Neurosci., vol. 2023, no. 1, 2023, doi: 10.1155/2023/7876302.
A. Raza, “Enhancing Tea Plant Health Through Machine Learning: EfficientNet-B0 for Tea Sickness Detection,” Int. J. Comput. Appl., vol. 186, no. 45, pp. 1–7, 2024, doi: 10.5120/ijca2024924092.
M. R. Islam et al., “A Lightweight Deep Learning Model for Tea Leaf Disease Identification,” Mach. Learn. Knowl. Extr., vol. 7, no. 4, p. 123, 2025, doi: 10.3390/make7040123.
Ö. Öztürk, B. Sarıca, and D. Z. Şeker, “Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification,” Horticulturae, vol. 11, no. 4, p. 437, 2025, doi: 10.3390/horticulturae11040437.
M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.
Z. Xue, R. Xu, D. Bai, and H. Lin, “YOLO-Tea: A Tea Disease Detection Model Improved by YOLOv5,” Forests, vol. 14, no. 2, p. 415, 2023, doi: 10.3390/f14020415.
B. Lien, “A Lightweight Deep Learning Model for Tea Leaf Disease Identification,” Machines, no. 4, p. 123, 2025.
Y. Li et al., “Tea leaf disease and insect identification based on improved MobileNetV3,” Front. Plant Sci., vol. 15, 2024, doi: 10.3389/fpls.2024.1459292.
J. Yang, G. J. Xu, M. D. Yang, and Z. P. Lin, “Lightweight wavelet-CNN tea leaf disease detection,” PLoS One, vol. 20, no. 5 May, p. e0323322, 2025, doi: 10.1371/journal.pone.0323322.
Febrian abie pratama, Miftahus solihin, and Siti mujilahwati, “Deep Learning-Based CNN for Tea Leaf Disease Classification,” J. Artif. Intell. Eng. Appl., vol. 5, no. 1, pp. 1814–1822, 2025, doi: 10.59934/jaiea.v5i1.1724.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



