KLASIFIKASI PENYAKIT TANAMAN PADI MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DENGAN ARSITEKTUR MOBILNETV2
DOI:
https://doi.org/10.23960/jitet.v14i1.8900Abstract Views: 75 File Views: 38
Keywords:
rice leaf disease, image classification, deep learning, MobileNetV2Abstract
Diseases affecting rice plants are one of the major factors contributing to decreased agricultural productivity and potential losses for farmers. Conventional disease identification generally relies on expert knowledge and is often impractical to perform accurately and efficiently in the field. This study aims to develop an image-based classification system for rice leaf diseases using a Deep Learning approach with a Convolutional Neural Network architecture, specifically MobileNetV2. The dataset consists of five rice leaf condition classes, namely bacterial disease, brown spot, blast, tungro, and healthy leaves, obtained from the Roboflow platform. The research methodology includes data collection, image pre-processing, model training using a transfer learning approach, and performance evaluation. Experimental results demonstrate that the proposed MobileNetV2 model achieves an accuracy of 93.46% and shows strong performance across most disease categories. Although misclassification still occurs among classes with similar visual characteristics, the results indicate that the developed model has significant potential as an efficient and automated decision-support system for rice plant disease identification.
Downloads
References
E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” J. Ilm. SINUS, vol. 19, no. 1, pp. 75–83, 2021, doi: 10.30646/sinus.v19i1.526.
A. Julianto, A. Sunyoto, and F. W. Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi,” Tek. Teknol. Inf. dan Multimed., vol. 3, no. 2, pp. 98–105, 2022, [Online]. Available: https://doi.org/10.46764/teknimedia.v3i2.77
F. H. Hawari, F. Fadillah, M. R. Alviandi, and T. Arifin, “KLASIFIKASI PENYAKIT PADI MENGGUNAKAN ALGORITMA CNN ( CONVOLUTIONAL NEURAL NETWORK ),” J. RESPONSIF, vol. 4, no. 2, pp. 184–189, 2022.
S. Agustiani, Y. T. Arifin, A. Junaidi, S. K. Wildah, and A. Mustopa, “Klasifikasi Penyakit Daun Padi menggunakan Random Forest dan Color Histogram,” J. Komputasi, vol. 10, no. 1, pp. 65–74, 2022, doi: 10.23960/komputasi.v10i1.2961.
U. N. Oktaviana, R. Hendrawan, A. F. K. Annas, and G. W. Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1216–1222, 2021.
N. B. Pamungkas and A. Suhendar, “Penerapan Metode Convolutional Neural Network pada Sistem Klasifikasi Penyakit Tanaman Apel berdasarkan Citra Daun,” Edumatic J. Pendidik. Inform., vol. 8, no. 2, pp. 675–684, 2024, doi: 10.29408/edumatic.v8i2.27958.
A. C. Milano, A. Yasid, and R. T. Wahyuningrum, “Klasifikasi Penyakit Daun Padi Menggunakan Model Deep Learning Efficientnet-B6,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, pp. 551–559, 2024, doi: 10.23960/jitet.v12i1.3855.
H. J. Choi and J. Y. Lee, “Comparative study between healthy young and elderly subjects: Higher-order statistical parameters as indices of vocal aging and sex,” Appl. Sci., vol. 11, no. 15, pp. 2–14, 2021, doi: 10.3390/app11156966.
P. Robicheaux et al., “Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models,” no. NeurIPS, pp. 1–32, 2025, [Online]. Available: http://arxiv.org/abs/2505.20612
H. Moayyed, M. Mohammadpourfard, C. Konstantinou, A. Moradzadeh, B. Mohammadi-Ivatloo, and A. P. Aguiar, “Image Processing Based Approach for False Data Injection Attacks Detection in Power Systems,” IEEE Access, vol. 10, pp. 12412–12420, 2022, doi: 10.1109/ACCESS.2021.3131506.
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, p. 48, 2019, doi: 10.1186/s40537-019-0197-0.
N. F. Armin, N. Hidayat, and A. A. Soebroto, “Implementasi Metode Analytical Hierarchy Process (AHP) – Weighted Product (WP) dalam Sistem Pendukung Keputusan untuk Rekomendasi Pelanggan Terbaik berbasis Website (Studi Kasus: PT. Pelabuhan Indonesia IV (Persero) Makassar),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 6, pp. 2949–2959, 2022, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11245
H. Y. Irwanto et al., “Development Steps of Avionics and Flight Control System of Flight Vehicle,” J. RESTI, vol. 7, no. 4, pp. 791–796, 2023, doi: 10.29207/resti.v7i4.4953.
N. H. Muttaqin and A. M. Widodo, “Evaluation of Transfer Learning-Based Convolutional Neural Networks (InceptionV3 and MobileNetV2) for Facial Skin-Type Classification,” J. Ilmu Komput. dan Inform., vol. 5, no. 1, pp. 11–32, 2025, doi: 10.54082/jiki.264.
I. F. Hawari et al., “Pengaruh Teknik Oversampling Pada Algoritma Machine Learning Dalam Klasifikasi Body Mass Index (BMI),” J. Ris. dan Apl. Mat., vol. 08, no. 01, pp. 51–68, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



