ANALISIS PERAN FEATURE ENGINEERING PADA KINERJA MODEL MACHINE LEARNING UNTUK KLASIFIKASI POTENSI TSUNAMI

Authors

  • Rizki Darmawan Fakultas Teknik dan Informatika, Universitas Bina Sarana Informatika
  • Immanuel Vico Yut Universitas Bina Sarana Informatika
  • Alvin Hernando Universitas Bina Sarana Informatika
  • Rani Irma Handayani Universitas Nusa Mandiri
  • Risca Lusiana Pratiwi Universitas Nusa Mandiri
  • Euis Widanengsih Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.23960/jitet.v14i1.8303

Abstract Views: 35 File Views: 25

Keywords:

Tsunami, Machine Learning, Feature Engineering, Klasifikasi

Abstract

Indonesia memiliki risiko bencana tsunami yang tinggi akibat lokasinya di Cincin Api Pasifik, sehingga menuntut adanya sistem peringatan dini yang akurat. Penelitian ini mengusulkan model klasifikasi potensi tsunami yang valid secara metodologis. Berbeda dengan penelitian sebelumnya yang sering menggunakan data "bocor" (leaked features), penelitian ini menerapkan strategi feature engineering mendalam yang menggabungkan fitur fisis (seperti is_shallow) dan fitur kualitas data (gap, nst) pada dataset Cincin Api Pasifik. Lima model machine learning (Naive Bayes, Logistic Regression, SVM, Random Forest, XGBoost) dievaluasi menggunakan 10-Fold Cross-Validation. Hasil penelitian menunjukkan feature engineering adalah langkah paling krusial, meningkatkan F1-Score dari ~0.38 menjadi 0.86. Random Forest teridentifikasi sebagai model paling seimbang (F1-Score 0.8636), sementara Naive Bayes menunjukkan performa paling "aman" (Recall 0.9808). Penelitian ini membuktikan bahwa feature engineering yang tepat lebih berdampak daripada pemilihan model, menghasilkan model prediksi yang valid dan robust.

Downloads

Download data is not yet available.

Author Biographies

Rizki Darmawan, Fakultas Teknik dan Informatika, Universitas Bina Sarana Informatika

Mahasiswa, Program Studi Informatika

Immanuel Vico Yut, Universitas Bina Sarana Informatika

Mahasiswa, Program Studi Informatika

Alvin Hernando, Universitas Bina Sarana Informatika

Mahasiswa, Program Studi Informatika

Rani Irma Handayani, Universitas Nusa Mandiri

Dosen, Program Studi Sistem Informasi

Risca Lusiana Pratiwi, Universitas Nusa Mandiri

Dosen, Program Studi Sistem Informasi

Euis Widanengsih, Universitas Bina Sarana Informatika

Dosen, Program Studi Sistem Informasi Akuntansi

References

E. H. S. Aulia, “SVM, NAIVE BAYES, DECISION TREE PADA ANALISIS SENTIMENMASYARAKAT TERHADAP ISU GEMPA MEGATHRUST,” Universitas Nusantara PGRI Kediri, Kediri, 2025. Accessed: Nov. 04, 2025. [Online]. Available: https://repository.unpkediri.ac.id/18222/3/RAMA_57201_2113030024_0723058501_0706098902_01_front_ref.pdf

J. Jumadi et al., “Tsunami Risk Mapping and Sustainable Mitigation Strategies for Megathrust Earthquake Scenario in Pacitan Coastal Areas, Indonesia,” Sustainability (Switzerland), vol. 17, no. 6, Mar. 2025, doi: 10.3390/su17062564.

National Geographic Society, “Plate Tectonics and the Ring of Fire,” National Geographic. Accessed: Nov. 03, 2025. [Online]. Available: https://education.nationalgeographic.org/resource/plate-tectonics-ring-fire/

S. S. Sabrina, “VISUALISASI DATA PENYEBAB KEMATIAN DI INDONESIA RENTANG TAHUN 2000-2022 DENGAN POWER BI,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4071.

Benazir and R. S. Oktari, “Assessing tsunami risk along the Aceh coast, Indonesia: a quantitative analysis of fault rupture potential and early warning system efficacy for predicting arrival time and flood extent,” Natural Hazards, vol. 120, no. 5, pp. 4875–4900, Mar. 2024, doi: 10.1007/s11069-024-06401-x.

W. Dharmawan, M. Diana, B. Tuntari, I. M. Astawa, S. Rahardjo, and H. Nambo, “Tsunami tide prediction in shallow water using recurrent neural networks: model implementation in the Indonesia Tsunami Early Warning System,” J Reliab Intell Environ, vol. 10, no. 2, pp. 177–195, Jun. 2024, doi: 10.1007/s40860-023-00214-8.

Sudarto and Kusrini, “KLASIFIKASI TSUNAMI GEMPA BUMI DENGAN TEKNIK STACKING ENSEMBLE MACHINE LEARNING,” Jurnal Informatika Polinema, vol. 10, no. 4, Aug. 2024, Accessed: Nov. 05, 2025. [Online]. Available: https://jurnal.polinema.ac.id/index.php/jip/article/view/5655

E. Mardiani et al., “Classification of Potential Tsunami Disaster Due to Earthquakes in Indonesia Based on Machine Learning,” International Journal Software Engineering and Computer Science (IJSECS), vol. 4, no. 1, pp. 13–23, Apr. 2024, doi: 10.35870/ijsecs.v4i1.2084.

I. G. J. Kurniawan, C. Dewi, and M. A. Rahman, “PENERAPAN MACHINE LEARNING EXTREME GRADIENT BOOSTING DALAM KLASIFIKASI POTENSI TSUNAMI BERDASARKAN DATA GEMPA BUMI,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 2, Feb. 2025, Accessed: Nov. 05, 2025. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14437

Z.-H. Zhou, Machine Learning, 4th ed. Singapore: Springer Singapore, 2021. doi: 10.1007/978-981-15-1967-3.

Jiawei. Han, Data Mining Concepts and Techniques, 4th ed. Morgan Kauffmann, 2022. Accessed: Nov. 05, 2025. [Online]. Available: https://datamineaz.org/textbooks/hanDataMiningConceptual.pdf

C. Cortes and V. Vapnik, “Support-Vector Networks Editor,” Machine Leaming, vol. 20, pp. 273–297, 1995, Accessed: Nov. 05, 2025. [Online]. Available: https://link.springer.com/article/10.1007/Bf00994018

L. Breiman, “Random Forests,” Mach Learn, vol. 45, pp. 5–32, 2001, Accessed: Nov. 05, 2025. [Online]. Available: https://link.springer.com/article/10.1023/a:1010933404324

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

T. Verdonck, B. Baesens, M. Óskarsdóttir, and S. vanden Broucke, “Special issue on feature engineering editorial,” Mach Learn, vol. 113, no. 7, pp. 3917–3928, Jul. 2024, doi: 10.1007/s10994-021-06042-2.

B. BAKIRARAR and A. H. ELHAN, “Class Weighting Technique to Deal with Imbalanced Class Problem in Machine Learning: Methodological Research,” Turkiye Klinikleri Journal of Biostatistics, vol. 15, no. 1, pp. 19–29, Jan. 2023, doi: 10.5336/biostatic.2022-93961.

Downloads

Published

2026-01-17

How to Cite

Darmawan, R., Yut, I. V., Hernando, A., Handayani, R. I., Pratiwi, R. L., & Widanengsih, E. (2026). ANALISIS PERAN FEATURE ENGINEERING PADA KINERJA MODEL MACHINE LEARNING UNTUK KLASIFIKASI POTENSI TSUNAMI. Jurnal Informatika Dan Teknik Elektro Terapan, 14(1). https://doi.org/10.23960/jitet.v14i1.8303

Issue

Section

Articles

Most read articles by the same author(s)