PENERAPAN ALGORITMA FREQUENT PATTERN GROWTH PADA POLA PEMBELIAN KONSUMEN (STUDI KASUS G.I.B STORE KOTA CIMAHI )
DOI:
https://doi.org/10.23960/jitet.v13i3S1.6773Abstract Views: 67 File Views: 48
Keywords:
FP-Growth, data mining, pola pembelianAbstract
Transaction pattern analysis constitutes one of the key factors in business decision-making, particularly in retail business decisions. This study aims to identify consumer purchasing patterns at G.I.B store in Cimahi City by implementing the Frequent Pattern Growth (FP-Growth) algorithm as a data mining method to discover associative patterns among products that are frequently purchased together. This research utilized data from 2023 encompassing both online and offline sales transactions, and the research process included data collection, data cleansing, data transformation, and the application of the FP-Growth algorithm using Google Colaboratory, as well as analysis of the resulting association patterns. The findings demonstrate that strong relationships exist between certain specific products, such as between Junior Premium 8 and Kids Premium M, with a confidence level of 77.91%. These patterns can assist in determining and formulating business strategies for promotions, product bundling, and more efficient inventory management. The implementation of the FP-Growth algorithm has proven effective in helping business owners understand customer shopping behaviors and support more targeted decision-making.
Downloads
References
APJII, “APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang,”. Available: https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang. [Accessed: Jan. 15,2025].
Haoxiang, W.2021. Big Data Analysis and Perturbation using Data Mining Algorithm. J. Soft Comput. Paradig., 3(1),pp.19-28.
Han, J., kamber,M., and Pei,J.2011. Data Mining Concepts and Techniques Third Edition. Morgan Kaufmann Publisher : United States.
Sumirat, S., and Ramdhani, Y., 2021. Implementasi Algoritma Fp-Growth Untuk Penentuan Paket Hemat Produk Skincare. E-Prosiding Teknik Informatika., 2(2),pp. 191-199.
Nurasiah., 2021. Implementasi Algoritma FP-Growth Pada Pengenalan Pola Penjualan Nurasiah. Terapan Informatika Nusantara., 1(9) pp. 435-444.
Achmad, F., Nurdiawan, O. and Wijaya A.Y., 2023. Analisa Pola Transaksi Pembelian Konsumen Pada Toko Ritel Kesehatan Menggunakan Algoritma Fp-Growth. Jurnal Mahasiswa Teknik Informatika. 7(1),pp. 168–175.
Asyuti, S., and Setyawan, A.A., 2023. Data Mining Dalam Penggunaan Presensi Karyawan Dengan Cluster Means. Jurnal Ilmiah Sains Teknologi Dan Informasi. 1(1), pp. 01–10.
Amna, et all., 2023. Data Mining. PT Global Eksekutif Teknologi : Indonesia
Firdaus, E.A., Maulani S., and Dharmawan A.B., 2021. Pengukuran Minat Baca Mahasiswa Dengan Metode Clustering Di Perpustakaan Akademi Keperawatan Rs.Dustira Cimahi Menggunakan Data Mining. Jurnal Nuansa Informatika. 15(1) 32-40.
Kurniawan, A., Saedudin, R.R., and Andreswari, R., 2021. Penerapan Data Mining Restoran Pagi Sore Menggunakan Metode Algoritma Apriori. e-Proceeding of Engineering. 8(5) pp. 9292–9406.
Wibowo, A.R., and Jananto, A., 2020. Implementasi Data Mining Metode Asosiasi Algoritma Fp-Growth Pada Perusahaan Ritel. Jurnal Teknologi Informasi dan Komunikasi. 10(2) pp.200-212.
Pratiwi, C., and Ernawati., 2024. Penerapan Algoritma C4.5 untuk Klasifikasi Penentuan Penerima Program Kartu Indonesia Sehat. Jurnal Mahasiswa Teknik Informatika. 8(5) pp. 8638- 8643.
U. Sistem, R. Buku, and A. Rachmat, “Implementasi Algoritma Fp-Growth,” vol. 13, no. January 2015, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



