ANALISIS SENTIMEN ULASAN APLIKASI GAME HAY DAY MENGGUNAKAN ALGORITMA RANDOM FOREST

Authors

DOI:

https://doi.org/10.23960/jitet.v13i3S1.6772

Abstract Views: 137 File Views: 104

Keywords:

Analisis Sentimen, Random Forest., Ulasan Pengguna, Hay Day.

Abstract

This study aims to analyze the sentiment of Hay Day game user reviews on the Google Play Store platform using the Random Forest (RF) algorithm. The data utilized consisted of 5,060 reviews, which were processed through pre-processing stages, including text cleaning, tokenizing, stopword removal, and stemming. TF-IDF was employed as a feature extraction technique to determine word importance within the reviews. The analysis results indicate that the majority of user sentiment tends toward negative (1,821 comments), suggesting dissatisfaction with technical aspects of the game, such as bugs, pay-to-win systems, and account access issues. The RF model evaluation demonstrates an accuracy of 80.41%, with precision values of 79.3%, recall of 80.41%, and F1-score of 78.55%. This research recommends that game developers prioritize improvements to frequently complained technical issues and enhance communication with users to increase player satisfaction and loyalty.

Downloads

Download data is not yet available.

References

Buijsman, M. 2024. Newzoo Free Global Games Market Report 2024. Tersedia: https://newzoo. com/resources/trend-reports/newzoos-global-games-market-report-2024-free-version. Akses 18 Januari 2025.

Livingston, I.J., Nacke, L.E., and Mandryk, R.L., 2011. The impact of negative game reviews and user comments on player experience. Proceedings of the 2011 ACM SIGGRAPH Symposium on Video Games. pp. 25–29.

Liu, B. 2012. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Second Edition. Morgan & Claypool: China.

Rohman, T.B., Purwanto, D.D., and Santoso, J., 2018. Sentiment Analysis Terhadap Review Rumah Makan di Surabaya Memanfaatkan Algoritma Random Forest, Fakultas Sistem Informasi. 60284.

Purbolaksono, M.D., 2024. Sentiment Analysis of Game Review in Steam Platform using Random Forest, International Journal on Information and Communication Technology. 10(2), pp. 161–169.

Ananda, D.R and Riti, Y.F., 2024. Analisis Sentimen Ulasan Aplikasi Genshin Impact di Play Store Menggunakan Random Forest, in Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika, 1(1),pp. 578–586.

Anggoro. D., Putra, A.A.F., and Wijaya, A., 2023. Analisis Sentimen Review Pemain Teamfight Tactics dari Playstore untuk Meningkatkan Kualitas Game, Journal Of Informatics And Busisnes, 1(3), pp. 167-172

Andriawan, M.G., Ernawati, T., 2024. Penggunaan Algoritma Naïve Bayes Dan Support Vector Machine Untuk Analisis Sentimen Konflik Palestina Dan Israel Pada Platform X, J. Inform. dan Tek. Elektro Terap. 12(3), pp. 3222–3230.

Apriana, N., et all. 2020. Teks ulasan. Guepedia: Indonesia

Adiningtiyas, S. W., 2017. Peran Guru Dalam Mengatasi Kecanduan Game Online, Jurnal KOPASTA. 4(1), PP.28-40.

Han, J., and Kamber, M., 2006. Data MIning: Concepts and Techniques (2nd edition), Morgan Kaufmann Publishers: United States.

Manullang, O., Prianto, C., and Harani, N. H., 2023. Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based Dan Random Forest, Jurnal Ilmiah Informatika. 11(2), pp. 159–169.

Pamuji, F.Y., and Ramadhan, V.P., 2021. Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy, Jurnal Teknologi dan Manajemen Informatika. 7(1), pp. 46-50.

Wibawa, AP., et all. 2018. Metode-Metode Klasifikasi, Prosiding Seminar Ilmu Komputer dan Teknologi Informasi. 3(1)

Jurafsky, D., and Martin, J.H., 2014. Speech and Language Processing, Speech Lang. Process., Alan Apt: United States.

Ipmawati, J., 2016. Komparasi Teknik Klasifikasi Teks Mining pada Analisis Sentiment. Indonesian Journal On Networking and Security. 6(1), pp.28-36.

Downloads

Published

2025-10-19

How to Cite

Effendi, P. A. ., & Tati Ernawati. (2025). ANALISIS SENTIMEN ULASAN APLIKASI GAME HAY DAY MENGGUNAKAN ALGORITMA RANDOM FOREST. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.6772

Issue

Section

Articles