GWO-SVM: AN APPROACH TO IMPROVING SVM PERFORMANCE USING GREY WOLF OPTIMIZER IN INTELLECTUAL DISABILITY CLASSIFICATION

Authors

  • Muhammad Afifudin UPN Veteran Jawa Timur
  • Achmad Junaidi UPN Veteran Jawa Timur
  • Andreas Nugroho Sihananto UPN Veteran Jawa Timur
  • Izzatul Fithriyah Instalasi Kedokteran Jiwa RSUD Dr.Soetomo

DOI:

https://doi.org/10.23960/jitet.v12i3S1.5359

Abstract Views: 278 File Views: 160

Abstract

 Intellectual disability (ID) is a neurodevelopmental disorder that requires early and accurate diagnosis. This study aims to improve the efficiency of ID diagnosis using a machine learning approach. A Support Vector Machine (SVM) model optimized with Grey Wolf Optimizer (GWO) was developed and trained using data from questionnaires completed by 101 families/guardians of ID patients at RSUD Dr. Soetomo Surabaya. The features used include family history, cognitive abilities, and adaptive behaviors. The results showed that the GWO-SVM model achieved an accuracy of 95% in classifying ID patients, an improvement of 5% compared to the conventional SVM. The GWO algorithm successfully optimized the parameters in SVM, resulting in a model with the best performance. These findings indicate the potential of GWO-SVM as an effective and efficient tool for assisting in the diagnosis of ID.

Downloads

Download data is not yet available.

References

W. M. Sholihah, “Strategi Mengajarkan Keterampilan Hidup Sehari-Hari Untuk Anak dan Remaja Dengan Retardasi Mental: Sebuah Review Literatur:,” PINUS: Jurnal Penelitian Inovasi Pembelajaran, vol. 6, no. 2, pp. 50–61, Jul. 2021, doi: 10.29407/PN.V6I2.13840.

M. Bagus Andrianto, A. Sartika, D. Septeah Ningrum, U. Muhammadiyah Bengkulu, and P. Pematang Tiga, “Pengalaman Orangtua dalam Merawat Anak Retardasi Mental,” Jurnal Kesmas Asclepius, vol. 3, no. 1, pp. 9–16, Jun. 2021, doi: 10.31539/JKA.V3I1.2163.

P. Panzilion, P. Padila, A. D. Setyawati, H. J, and A. Sartika, “Stimulation of Preschool Motor Development Through Brain Gym and Puzzle,” JOSING: Journal of Nursing and Health, vol. 1, no. 1, pp. 10–17, Aug. 2020, doi: 10.31539/JOSING.V1I1.1166.

R. Ruliati, “DUKUNGAN ORANG TUA TERHADAP FUNGSI SOSIAL PADA ANAK RETARDASI MENTAL,” Jurnal Kesehatan Samodra Ilmu (JKSI), vol. 11, no. 2, pp. 200–208, Aug. 2020, doi: 10.55426/JKSI.V11I2.123.

H. Apriyani and K. Kurniati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” Journal of Information Technology Ampera, vol. 1, no. 3, pp. 133–143, Dec. 2020, doi: 10.51519/JOURNALITA.VOLUME1.ISSSUE3.YEAR2020.PAGE133-143.

H. N. Irmanda and R. Astriratma, “Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 5, pp. 915–922, Oct. 2020, doi: 10.29207/RESTI.V4I5.2313.

P. Sharma and G. Kaur, “Optimization of Support Vector Machine Classifier Using Grey Wolf Optimization Algorithm for Chronic Kidney Disease Prediction,” Asian Pacific Journal of Health Sciences, vol. 9, no. 3, pp. 227–231, Apr. 2022, doi: 10.21276/APJHS.2022.9.3.46.

M. B. Subkhi, C. Fatichah, and A. Z. Arifin, “Seleksi Fitur Menggunakan Hybrid Binary Grey Wolf Optimizer untuk Klasifikasi Hadist Teks Arab,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 5, pp. 1115–1122, Oct. 2023, doi: 10.25126/JTIIK.2023106375.

N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 4, pp. 1580–1584, Oct. 2021, doi: 10.30865/MIB.V5I4.3347.

T. Jiang, J. L. Gradus, and A. J. Rosellini, “Supervised Machine Learning: A Brief Primer,” Behav Ther, vol. 51, no. 5, pp. 675–687, Sep. 2020, doi: 10.1016/J.BETH.2020.05.002.

A. Roihan, P. Abas Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 5, no. 1, pp. 75–82, May 2020, doi: 10.31294/IJCIT.V5I1.7951.

D. Darwis, N. Siskawati, and Z. Abidin, “PENERAPAN ALGORITMA NAIVE BAYES UNTUK ANALISIS SENTIMEN REVIEW DATA TWITTER BMKG NASIONAL,” Jurnal Tekno Kompak, vol. 15, no. 1, pp. 131–145, Feb. 2021, doi: 10.33365/JTK.V15I1.744.

S. Suryani and M. Mustakim, “Estimasi Keberhasilan Siswa dalam Pemodelan Data Berbasis Learning Menggunakan Algoritma Support Vector Machine,” Bulletin of Informatics and Data Science, vol. 1, no. 2, pp. 81–88, Nov. 2022, doi: 10.61944/BIDS.V1I2.36.

A. Darmawan Sidik, A. Ansawarman, K. Kunci, J. Kendaraan Bermotor, M. Regresi, and F. Jalan, “Prediksi Jumlah Kendaraan Bermotor Menggunakan Machine Learning,” Formosa Journal of Multidisciplinary Research, vol. 1, no. 3, pp. 559–568, Jul. 2022, doi: 10.55927/FJMR.V1I3.745.

T. M. M. Tyas and A. I. Purnamasari, “Penerapan Algoritma K-means dalam Mengelompokkan Demam Berdarah Dengue Berdasarkan Kabupaten,” Blend Sains Jurnal Teknik, vol. 1, no. 4, pp. 277–283, Mar. 2023, doi: 10.56211/BLENDSAINS.V1I4.231.

S. Febriani and H. Sulistiani, “Analisis Data Hasil Diagnoga Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5,” Jurnal Teknologi dan Sistem Informasi, vol. 2, no. 4, pp. 89–95, Dec. 2021, doi: 10.33365/JTSI.V2I4.1373.

J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189–215, Sep. 2020, doi: 10.1016/J.NEUCOM.2019.10.118.

C. H. Miller, M. D. Sacchet, and I. H. Gotlib, “Support Vector Machines and Affective Science,” Emotion Review, vol. 12, no. 4, pp. 297–308, Jun. 2020, doi: 10.1177/1754073920930784.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, pp. 650–658, Jul. 2020, doi: 10.30865/MIB.V4I3.2181.

L. Firdaus and T. Setiadi, “Perbandingan Algoritma Naive Bayes, Decision Tree, dan KNN untuk Klasifikasi Produk Populer Adidas US dengan Confusion Matrix,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 2, pp. 185–195, Dec. 2023, doi: 10.30865/JSON.V5I2.6124.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp. 697–711, Sep. 2021, doi: 10.30645/J-SAKTI.V5I2.369.

A. Khumaidi, “DATA MINING FOR PREDICTING THE AMOUNT OF COFFEE PRODUCTION USING CRISP-DM METHOD,” Jurnal Techno Nusa Mandiri, vol. 17, no. 1, pp. 1–8, Feb. 2020, doi: 10.33480/TECHNO.V17I1.1240.

W. Sudrajat and I. Cholid, “K-NEAREST NEIGHBOR (K-NN) UNTUK PENANGANAN MISSING VALUE PADA DATA UMKM,” Jurnal Rekayasa Sistem Informasi dan Teknologi, vol. 1, no. 2, pp. 54–63, Nov. 2023, doi: 10.59407/JRSIT.V1I2.77.

C. Herdian, A. Kamila, and I. G. A. M. Budidarma, “Studi Kasus Feature Engineering Untuk Data Teks: Perbandingan Label Encoding dan One-Hot Encoding Pada Metode Linear Regresi,” Technologia : Jurnal Ilmiah, vol. 15, no. 1, pp. 93–108, Jan. 2024, doi: 10.31602/tji.v15i1.13457.

M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 330–338, Sep. 2022, doi: 10.47065/JOSYC.V3I4.2112.

A. R. Aziz, B. Warsito, and A. Prahutama, “PENGARUH TRANSFORMASI DATA PADA METODE LEARNING VECTOR QUANTIZATION TERHADAP AKURASI KLASIFIKASI DIAGNOSIS PENYAKIT JANTUNG,” Jurnal Gaussian, vol. 10, no. 1, pp. 21–30, Feb. 2021, doi: 10.14710/J.GAUSS.10.1.21-30.

Downloads

Published

2024-10-12

How to Cite

Afifudin, M., Junaidi, A., Sihananto, A. N., & Fithriyah, I. (2024). GWO-SVM: AN APPROACH TO IMPROVING SVM PERFORMANCE USING GREY WOLF OPTIMIZER IN INTELLECTUAL DISABILITY CLASSIFICATION. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3S1). https://doi.org/10.23960/jitet.v12i3S1.5359

Issue

Section

Articles

Most read articles by the same author(s)