PENERAPAN METODE NAÏVE BAYES DALAM KLASIFIKASI KESEGARAN IKAN BERDASARKAN WARNA PADA CITRA AREA MATA

Mutmainnah Muchtar, Yuwanda Purnamasari Pasrun, Rasmiati Rasyid, Nisa Miftachurohmah, Mardiawati Mardiawati

Abstract


As a maritime nation, fish is a staple in the Indonesian diet, rich in nutrition and a crucial protein source. It is imperative to maintain the freshness of fish to ensure the quality of fish production. However, the practice of mixing fresh and non-fresh fish poses a serious threat to consumer health and diminishes the overall quality of fish production. Therefore, the development of an automated and efficient method is necessary to distinguish between fresh and non-fresh fish. This research proposes the application of the Naïve Bayes method in classifying fish freshness based on color analysis in the eye area image. This approach involves the extraction of entropy features after segmenting fish images using the RGB and YCbCr color models. A total of 40 datasets of fish eye images were used for training and testing the model. The research results indicate that the proposed classification method achieved an accuracy rate of 97.5%. This success signifies the potential of the color analysis method and entropy features in distinguishing levels of fish freshness. These findings contribute to the development of automated techniques for monitoring and processing fish quality in the fisheries industry.

Full Text:

PDF 611-617

References


I. P. Ningrum, M. Muchtar, R. A. Saputra, A. M. Sajiah, S. R. Harati, and H. Jaya, “Fuzzy Logic Methods to Identify Potential Area Mapping for Mangrove Forests in Kendari using Landsat Image,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/797/1/012019.

M. Muchtar, “DETEKSI AREA KERUSAKAN PADA CITRA TERUMBU KARANG AKIBAT CORAL BLEACHING BERBASIS PENGOLAHAN CITRA DIGITAL,” Jurnal Innovation and Future Technology (IFTECH) P-ISSN, vol. 5, pp. 2656–1719, 2023.

Badan Standar Nasional BSN, “SNI Standar Nasional Indonesia. Ikan segar-Bagian 1: Spesifikasi,” 2006. Accessed: Aug. 10, 2023. [Online]. Available: https://kupdf.net/download/sni-01-27291-2006-spesifikasi-ikan-segar-i_5af3fbb0e2b6f56059d1f733_pdf

T. Dwi Novianto, I. Made Susi Erawan, L. Riset Mekanisasi Pengolahan Hasil Perikanan, Y. K. Jl Imogiri Barat, and D. Yogyakarta, “Perbandingan Metode Klasifikasi pada Pengolahan Citra Mata Ikan Tuna,” in Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya), 2020, pp. 216–223.

S. Saputra, A. Yudhana, and R. Umar, “Krea-TIF: Jurnal Teknik Informatika Identifikasi Kesegaran Ikan Menggunakan Algoritma KNN Berbasis Citra Digital,” vol. 10, no. 1, pp. 1–9, 2022, doi: 10.32832/kreatif.v10i1.6845.

B. A. Wardijono, Lussiana ETP, and Rozi, “Identifikasi Karakteristik Citra Berdasarkan pada Nilai Entropi dan Kontras,” Journal of Applied Computer Science and Technology, vol. 2, no. 1, pp. 18–23, Jun. 2021, doi: 10.52158/jacost.v2i1.136.

H. Honainah, F. F. Romadhoni, and A. Ato’illah, “Klasifikasi Kesegaran Ikan Tongkol Berdasarkan Warna Mata Menggunakan Metode Backpropagation,” Jurnal Penelitian Inovatif, vol. 2, no. 2, pp. 405–414, Aug. 2022, doi: 10.54082/jupin.90.

M. S. Nasution and N. Fadillah, “Deteksi Kematangan Buah Tomat Berdasarkan Warna Buah dengan Menggunakan Metode YCbCr,” InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan), vol. 3, no. 2, pp. 147–150, Mar. 2019, doi: 10.30743/infotekjar.v3i2.1059.

Moh. A. Miftakhurahmat, N. Safitri, P. A. Kusnadi, and C. Rozikin, “KLASIFIKASI PENGGUNA HASHTAG PADA APLIKASI TIKTOK MENGGUNAKAN PERBANDINGAN METODE K-NEAREST NEIGHBORS DAN NAÏVE BAYES CLASSIFIER,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, Aug. 2023, doi: 10.23960/jitet.v11i3.3150.

A. R. Hanif, E. Nasrullah, and F. X. A. Setyawan, “DETEKSI KARAKTER PLAT NOMOR KENDARAAN DENGAN MENGGUNAKAN METODE OPTICAL CHARACTER RECOGNITION (OCR),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 1, Jan. 2023, doi: 10.23960/jitet.v11i1.2897.

Y. P. Pasrun, M. Muchtar, A. N. Basyarah, and Noorhasanah, “Indonesian License Plate Detection Using Morphological Operation,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/797/1/012037.

M. Muchtar, “Penggabungan Fitur Dimensi Fraktal dan Lacunarity untuk Klasifikasi Daun,” Institut Teknologi Sepuluh Nopember, Surabaya, 2015.

M. Muchtar and L. Cahyani, “Klasifikasi Citra Daun dengan Metode Gabor Co-Occurence,” ULTIMA Computing, vol. VII, no. 2, pp. 39–47, 2015.

A. Tenri Sumpala, Y. Purnamasari Pasrun, and M. Muchtar, “Sistem Pakar Hama dan Penyakit Tanaman Cabai Rawit menggunakan Metode Dempster Shafer,” 2023.




DOI: http://dx.doi.org/10.23960/jitet.v12i1.3879

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung
Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
Email: jitet@eng.unila.ac.id
Website : https://journal.eng.unila.ac.id/index.php/jitet

Copyright (c) Jurnal Informatika dan Teknik Elektro Terapan (JITET)
pISSN: 2303-0577   eISSN: 2830-7062