PENERAPAN ALGORITMA NAIVE BAYES UNTUK ANALISIS SENTIMEN PENGUNJUNG DI PANTAI KEJAWANAN
DOI:
https://doi.org/10.23960/jitet.v13i1.5774Abstract Views: 344 File Views: 223
Abstract
Penelitian ini bertujuan untuk menganalisis sentimen ulasan pengunjung terhadap objek wisata Pantai Kejawanan dengan menggunakan algoritma Naïve Bayes. Sentimen diklasifikasikan menjadi dua kategori, yaitu positif dan negatif. Ulasan daring merupakan sumber data penting untuk memahami persepsi pengunjung terhadap destinasi wisata. Algoritma Naïve Bayes dipilih karena keunggulannya dalam menganalisis teks. Dataset terdiri dari 998 ulasan yang dikumpulkan melalui scraping menggunakan SerApi, dengan periode data dari 2020 hingga 2024. Analisis dilakukan melalui tahapan Knowledge Discovery in Databases (KDD), mencakup pemilihan data, pre-processing (pembersihan data, case folding, tokenisasi, penghapusan stopword, dan stemming), serta transformasi menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF). Dataset dibagi menjadi 70% data pelatihan dan 30% data pengujian sebelum penerapan algoritma. Hasil menunjukkan bahwa model mampu mencapai akurasi 78%, presisi 92%, recall 80%, dan F1-score 86%, yang mencerminkan performa baik dalam klasifikasi sentimen. Evaluasi menggunakan confusion matrix menunjukkan model konsisten dalam membedakan sentimen positif dan negatif. Analisis ini menunjukkan bahwa mayoritas ulasan pengunjung Pantai Kejawanan bersentimen positif, menggambarkan pengalaman yang memuaskan.
Keywords:
naïve bayes; objek wisata, data mining; analisis sentimen; pengunjung.
Downloads
References
D. S. Utami and A. Erfina, “Analisis Sentimen Objek Wisata Bali Di Google Maps Menggunakan Algoritma Naive Bayes,” J. Sains Komput. Inform., vol. 6, no. 1, pp. 418–427, 2022.
N. L. P. Merawati, A. Z. Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 123–131, 2021, doi: 10.29207/resti.v5i1.2587.
Y. A. Singgalen, “Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier,” Build. Informatics, Technol. Sci., vol. 4, no. 3, p. 1343−1352, 2022, doi: 10.47065/bits.v4i3.2486.
G. K. Pati and E. Umar, “Analisis Sentimen Komentar Pengunjung Terhadap Tempat Wisata Danau Weekuri Menggunakan Metode Naive Bayes Classifier Dan K- Nearest Neighbor,” J. Media Inform. Budidarma, vol. 6, no. 4, pp. 2309–2315, 2022, doi: 10.30865/mib.v6i4.4635.
M. F. Y. Herjanto and Carudin, “Analisis Sentimen Ulasan Pengguna Aplikasi Sirekap Pada Play Store Menggunakan Algoritma Random Forest Classifer,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 1204–1210, 2024, doi: 10.23960/jitet.v12i2.4192.
Y. A. Singgalen, “Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo,” J. Inf. Syst. Informatics, vol. 4, no. 3, pp. 511–523, 2022, doi: 10.51519/journalisi.v4i4.294.
Y. A. Singgalen, “Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 614–625, 2023, doi: 10.47065/josh.v4i2.2999.
R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi menggunakan Algoritma K-Nearest Neighbor (K-NN),” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371.
M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, pp. 640–651, 2021, doi: 10.30865/mib.v5i2.2937.
Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier (NBC) dan Decision Tree (DT),” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1551–1562, 2023, doi: 10.30865/mib.v7i3.6461.
R. Ardianto, T. Rivanie, Y. Alkhalifi, F. Nugraha, and W. Gata, “SENTIMENT ANALYSIS ON E-SPORTS FOR EDUCATION CURRICULUM USING NAIVE BAYES AND SUPPORT VECTOR MACHINE,” J. Ilmu Komput. dan Inf. (Journal Comput. Sci. Information), vol. 2, no. 13, pp. 109–122, 2020, doi: 10.1109/ICECOS47637.2019.8984530.
F. Taufiqurrahman, S. Al Faraby, and M. D. Purbolaksono, “Klasifikasi Teks Multi Label pada Hadis Terjemahan Bahasa Indonesia Menggunakan Chi Square dan SVM,” e-Proceeding Eng., vol. 8, no. 5, pp. 10650–10659, 2021.