ANALISIS KOMPARATIF TIGA ALGORITMA MACHINE LEARNING DALAM PREDIKSI EFEKTIVITAS TERAPI ALTERNATIF PASIEN STROKE

Authors

  • Zulfati Dinul Fatiha Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.23960/jitet.v14i1.9003

Abstract Views: 52 File Views: 25

Keywords:

Prediksi Pengobatan Alternatif Stroke, Komparasi Model Machine Learning, Random Forest, XGBoost, Klasifikasi Medis

Abstract

Alternative medicine based on Traditional Chinese Medicine such as acupuncture, cupping, and herbs is widely used in stroke rehabilitation, but its effectiveness varies among patients. This study aims to compare the performance of three machine learning algorithms—Logistic Regression, Random Forest, and XGBoost—in predicting the success of alternative medicine for stroke patients. The dataset consists of 1040 medical records with 15 clinical features from a health center in Tangerang. Research methods include data preprocessing, 80:20 data splitting, model training, and evaluation using accuracy, precision, recall, F1-score, and Cohen’s Kappa metrics. Results show that Random Forest achieved the best performance with 93.91% accuracy, outperforming XGBoost (92.31%) and Logistic Regression (88.14%). Random Forest also demonstrated robustness with default configuration compared to XGBoost, which requires intensive hyperparameter tuning for optimal performance. These findings recommend Random Forest as a practical choice for clinical prediction system implementation with limited resources. The research contributes to the development of data-based decision support systems in stroke alternative medicine services

Downloads

Download data is not yet available.

References

D. A. Andira and J. K. Pudjibudojo, "Pengobatan Alternatif Sebagai Upaya Penyembuhan Penyakit," Insight J. Pemikir. dan Penelit. Psikol., vol. 16, no. 2, pp. 393–401, 2020.

D. A. Andira and J. K. Pudjibudojo, "Pengobatan alternatif sebagai upaya penyembuhan penyakit," Insight J. Pemikir. dan Penelit. Psikol., vol. 16, no. 2, pp. 393–401, 2020.

G. Noor Alivian and K. N. Pratama, "Efektifitas terapi akupuntur terhadap keberhasilan rehabilitasi pasien pasca stroke: Literature review," J. Bionursing, vol. 4, no. 1, pp. 29–35, 2022.

S. Shickel et al., "Deep EHR: A survey of recent advances in deep learning techniques for electronic health record analysis," IEEE J. Biomed. Health Inform., vol. 22, no. 5, pp. 1589–1604, May 2018.

A. Rajkomar, J. Dean, and I. Kohane, "Machine learning in medicine," New Engl. J. Med., vol. 380, no. 14, pp. 1347–1358, Apr. 2019.

M. Lu et al., "Neuroimaging mechanisms of acupuncture on functional reorganization for post-stroke motor improvement: A machine learning-based fMRI study," Front. Neurosci., vol. 17, pp. 1–18, May 2023.

T. Yin et al., "The spontaneous activity pattern of the middle occipital gyrus predicts the clinical efficacy of acupuncture treatment for migraine without aura," Front. Neurol., vol. 11, pp. 1–12, Nov. 2020.

Y. Tu et al., "Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain," NeuroImage Clin., vol. 23, p. 101885, Apr. 2019.

S. Yu et al., "Resting-state functional connectivity patterns predict acupuncture treatment response in primary dysmenorrhea," Front. Neurosci., vol. 14, pp. 1–11, Sep. 2020.

N. H. Alfajr, G. Garno, and D. Yusup, "Studi komparasi algoritma Random Forest Classifier dan Support Vector Machine dalam prediksi penyakit jantung," J. Inform. dan Tek. Elektro Terapan, vol. 13, no. 3, pp. 1–10, 2025, doi: 10.23960/jitet.v13i3.6569.

M. R. Andryan, M. Fajri, and N. Sulistyowati, "Komparasi kinerja algoritma XGBoost dan Support Vector Machine untuk diagnosis kanker payudara," JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, pp. 1–10, Jan. 2022.

Z. D. Fatiha and A. Subekti, "Explainable prediction of alternative medicine outcome using machine learning and Shapley values," in Proc. 2023 Int. Conf. Inf. Technol. Res. Innov. (ICITRI), Aug. 2023, pp. 1–6, doi: 10.1109/ICITRI59340.2023.10249346.

H. B. Patel et al., "Logistic regression in clinical and health services research: A comparative study," J. Med. Syst., vol. 45, no. 3, p. 32, Mar. 2021.

L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.

T. Chen and C. Guestrin, "XGBoost: A scalable tree boosting system," in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016, pp. 785–794.

S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining. Springer, 2015.

R. A. Sarno and D. A. I. Sensuse, "Evaluasi metode K-fold cross validation untuk klasifikasi data medis menggunakan algoritma C4.5 dan Naïve Bayes," J. RESTI (Rekayasa Sist. dan Teknol. Inform.), vol. 5, no. 2, pp. 284–291, Apr. 2021.

A. F. Huda and R. Wijaya, "Analisis performa Random Forest pada klasifikasi data tidak seimbang di bidang kesehatan," J. Ilmu Komput. dan Inform., vol. 14, no. 2, pp. 45–56, Aug. 2022.

J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," Biometrics, vol. 33, no. 1, pp. 159–174, Mar. 1977.

Downloads

Published

2026-01-17

How to Cite

Zulfati Dinul Fatiha. (2026). ANALISIS KOMPARATIF TIGA ALGORITMA MACHINE LEARNING DALAM PREDIKSI EFEKTIVITAS TERAPI ALTERNATIF PASIEN STROKE. Jurnal Informatika Dan Teknik Elektro Terapan, 14(1). https://doi.org/10.23960/jitet.v14i1.9003

Issue

Section

Articles