PENGENDALIAN GERAK LATERAL PESAWAT FT-EXPLORER

Perancangan dan Implementasi Kendali PID

Authors

  • Try susanto Institut Teknologi dan Bisnis Diniyyah Lampung

DOI:

https://doi.org/10.23960/jitet.v14i1.8983

Abstract Views: 35 File Views: 15

Keywords:

Unmanned Aerial Vehicle,Kontrol PID, Lateral.

Abstract

 Pengendalian gerak lateral merupakan aspek krusial dalam menjaga kestabilan penerbangan pesawat tanpa awak (Unmanned Aerial Vehicle) tipe fixed-wing, khususnya ketika menghadapi gangguan eksternal. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem kendali gerak lateral berbasis Proportional Integral Derivative (PID) pada pesawat fixed-wing tipe FT-Explorer. Metode penelitian meliputi perancangan perangkat keras berupa sistem embedded yang terintegrasi dengan sensor Inertial Measurement Unit (IMU), aktuator servo, motor brushless, serta modul telemetri, dan perancangan perangkat lunak dengan algoritma kendali PID. Pengujian sistem dilakukan melalui uji terbang langsung dengan pemberian gangguan sudut sebesar 20°–25%. Kinerja sistem dievaluasi berdasarkan parameter rise time, settling time, overshoot, dan steady-state error. Hasil pengujian menunjukkan bahwa sistem kendali PID dengan parameter Kp = 0,4, Ki = 0,01, dan Kd = 0,02 mampu menjaga kestabilan gerak lateral pesawat dengan baik. Respon terbaik dicapai dengan rise time 1,2 detik, settling time 3,9 detik, overshoot 3,22°, dan steady-state error 0,77°, yang seluruhnya berada dalam batas spesifikasi yang ditetapkan. Hasil penelitian ini menunjukkan bahwa metode PID efektif diterapkan pada pesawat FT-Explorer untuk menjaga kestabilan gerak lateral.

Lateral motion control is a crucial aspect in maintaining the flight stability of fixed-wing Unmanned Aerial Vehicles (UAVs), especially under external disturbances. This study aims to design and implement a Proportional–Integral–Derivative (PID)-based lateral motion control system for a fixed-wing UAV of the FT-Explorer type. The research method includes the design of hardware in the form of an embedded system integrated with an Inertial Measurement Unit (IMU), servo actuators, brushless motors, and telemetry modules, as well as software development using a PID control algorithm. System testing was conducted through direct flight tests by applying angular disturbances of 20°–25%. The control system performance was evaluated based on rise time, settling time, overshoot, and steady-state error parameters. The experimental results show that the PID controller with parameters Kp = 0.4, Ki = 0.01, and Kd = 0.02 is capable of maintaining lateral stability effectively. The best response achieved a rise time of 1.2 seconds, settling time of 3.9 seconds, overshoot of 3.22°, and steady-state error of 0.77°, all of which meet the specified performance criteria. These results indicate that the PID control method is effective for lateral motion stabilization of the FT-Explorer UAV.

Downloads

Download data is not yet available.

References

E. Irmawan and E. Eko Prasetiyo, “Kendali Adaptif Neuro Fuzzy PID untuk Kestabilan Terbang Fixed Wing UAV (Adaptive Control of Neuro Fuzzy PID for Fixed Wing UAV Flight Stability),” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 1, pp. 73–78, 2020, doi: 10.22146/jnteti.v9i1.142.

A. Hermawan, “Realisasi dan Tuning Pengontrolan PID Drone Fixed Wing untuk Pemetaan Udara,” vol. 6, no. 2, 2019.

Ç. Sezer, “Optimization of PID Controllers for UAVs Using SPSA Algorithm for Enhanced Flight Performance,” vol. 9, no. 1, pp. 28–33, 2025.

A. Israr, E. H. Alkhammash, and M. Hadjouni, “Guidance , Navigation , and Control for Fixed-Wing UAV,” vol. 2021, 2021, doi: 10.1155/2021/4355253.

D. B. Widyantara, R. Sumiharto, and S. B. Wibowo, “Purwarupa Sistem Kendali Kestabilan Pesawat Tanpa Awak Sayap Tetap Menggunakan Robust PID 1,” vol. 6, no. 2, pp. 141–150, 2016.

Selamawit Mekuria Dubale, Mebaye Belete Mamo, and Bethlehem Nigusse Mulugeta, “Fixed Wing Unmanned Aerial Vehicle Control by Non-linear PID Controller,” J. Electr. Eng. Electron. Control Comput. Sci. – JEEECCS, vol. 7, no. 24, pp. 1–8, 2021.

A. You, M. Be, and I. In, “Control and navigation system for a fixed-wing unmanned aerial vehicle,” vol. 031306, no. November 2019, 2024, doi: 10.1063/1.4866169.

E. W. Metekia, W. A. Asfaw, C. M. Abdissa, and L. N. Lemma, “Control of a fixed wing unmanned aerial vehicle using a robust fractional order controller,” Sci. Rep., vol. 15, no. 1, pp. 1–34, 2025, doi: 10.1038/s41598-025-03552-0.

T. Komputer, D. T. Elektro, and U. N. Semarang, “BERBASIS PID,” vol. 13, no. 3.

M. Ariyanto and J. D. Setiawan, “Uji Terbang Autonomous Low Cost Fixed Wing UAV Menggunakan PID Compensator,” vol. 19, no. 4, pp. 231–236, 2017.

A. Primagani, Z. Afnan, F. R. Husna, and E. N. Firdausi, “KONTROL LEVEL KETINGGIAN AIR TANDON PENGUIN 1500 LITER MENGGUNAKAN MATLAB,” vol. 13, no. 3, pp. 229–237.

Y. Eraslan and T. Oktay, “Simultaneous flight control system and twist-morphing wing design of an unmanned aerial vehicle Bir insansız hava aracının eşzamanlı uçuş kontrol sistemi ve burularak- başkalaşabilen kanat tasarımı,” vol. 13, no. 4, pp. 1184–1191, 2024, doi: 10.28948/ngmuh.1501418.

M. Bilici and M. Karalı, “International Journal of Aviation Modeling and Control of a Fixed-Wing High-Speed Mini-UAV,” vol. 3, no. 1, pp. 35–44, 2022, doi: 10.23890/IJAST.vm03is01.0104.

T. Win, H. L. A. M. Y. O. Tun, H. Tin, and C. H. O. Nyunt, “MODELLING AND PID CONTROL SYSTEM FOR FIXED-WING,” no. 6, pp. 8–11, 2018.

B. K. Aliyu, A. A. Petinrin, and J. A. Adewumi, “PID Control Design of Sideslip Angle for a Fixed- Wing Mini-UAV,” vol. 6, no. 3, pp. 1–14, 2016, doi: 10.9734/AIR/2016/22738.

J. Walalangi et al., “Implementasi Pengendali PID Pada Pendaratan Otomatis Wahana Tanpa Awak,” J. Tek. Elektro dan Komput., vol. 7, no. 1, pp. 85–92, 2018, doi: 10.35793/jtek.7.1.2018.19205.

E. M. Sartika and R. Sarjono, “Pengontrolan Kecepatan Rotor BLDC UAV Berdasarkan Hasil Identifikasi menggunakan Metode Regresi,” vol. 9, no. 1, pp. 114–124, 2021.

J. López, R. Dormido, S. Dormido, and J. P. Gómez, “A Robust 𝐻 ∞ Controller for an UAV Flight Control System,” vol. 2015, 2015.

Downloads

Published

2026-01-18

How to Cite

susanto, T. (2026). PENGENDALIAN GERAK LATERAL PESAWAT FT-EXPLORER: Perancangan dan Implementasi Kendali PID. Jurnal Informatika Dan Teknik Elektro Terapan, 14(1). https://doi.org/10.23960/jitet.v14i1.8983

Issue

Section

Articles