KLASIFIKASI CHRONIC KIDNEY DISEASE (CKD) MENGGUNAKAN TOOLS WEKA, RAPIDMINER, DAN ORANGE DATA MINING: ANALISIS PERBANDINGAN KINERJA
DOI:
https://doi.org/10.23960/jitet.v14i1.8951Abstract Views: 70 File Views: 69
Keywords:
Chronic Kidney Disease, Machine Learning, Klassifikasi, Analisis PerbandinganAbstract
Chronic Kidney Disease (CKD) merupakan salah satu penyakit tidak menular dengan tingkat prevalensi dan mortalitas yang terus meningkat secara global. Deteksi dini CKD sangat penting untuk mencegah komplikasi dan memperpanjang harapan hidup pasien. Penelitian ini bertujuan untuk membandingkan performa algoritma klasifikasi yang diterapkan pada dua platform data mining populer, yaitu WEKA, RapidMiner, dan Orange dalam menganalisis dataset penyakit ginjal kronis dari UCI Machine Learning (ML) Repository. Lima algoritma klasifikasi digunakan dalam eksperimen, yaitu Naive Bayes, Support Vector Machine (SVM), Random Forest, k-NN, dan Logistic Regression dengan skema validasi silang 10-fold. Kinerja model dievaluasi berdasarkan Confusion Matrix berupa nilai accuracy, precision, dan recall. Hasil menunjukkan bahwa terdapat perbedaan performa antar algoritma pada masing-masing tools. Pada tools WEKA, algoritma Random Forest menunjukkan performa terbaik dengan akurasi 99.81% dan algoritma k-NN menunjukkan performa terburuk. Pada tools RapidMiner, algoritma k-NN justru menampilkan nilai terbaik dengan nilai akurasi 99.5%, sedangkan Niave Bayes menyusul di bawahnya. Pada tools Orange algoritma SVM dan Random Forest memiliki performa terbaik dengan nilai 99.8% dan algoritma terburuk k-NN. Secara umum tools WEKA memiliki kinerja yang lebih baik, disusul Orange, dan RapidMiner. Namun, setiap platform memiliki keunggulan masing-masing. Ketiga tools memiliki potensi yang besar dalam pengembangan sistem pendukung keputusan berbasis ML untuk diagnosis CKD
Downloads
References
M. A. Islam, M. Z. H. Majumder, and M. A. Hussein, “Chronic kidney disease prediction based on machine learning algorithms,” J. Pathol. Inform., vol. 14, 2025, doi: 10.1016/j.jpi.2023.100189.
E. K. Bongetti et al., “Classification of chronic kidney disease in older Australian adults by the CKD-EPI 2009 and 2021 equations: secondary analysis of ASPREE study data,” Med. J. Aust., 2024, doi: 10.5694/mja2.52559.
M. S. Arif, A. Mukheimer, and D. Asif, “Enhancing the Early Detection of Chronic Kidney Disease: A Robust Machine Learning Model,” Big Data Cogn. Comput., vol. 7, no. 3, 2023, doi: 10.3390/bdcc7030144.
A. Levin, I. G. Okpechi, F. J. Caskey, C. W. Yang, M. Tonelli, and V. Jha, “Perspectives on early detection of chronic kidney disease: the facts, the questions, and a proposed framework for 2023 and beyond,” Kidney Int., vol. 103, no. 6, pp. 1004–1008, 2023, doi: 10.1016/j.kint.2023.03.009.
C. Karima and W. Anggraeni, “Performance Analysis of the Ada-Boost Algorithm For Classification of Hypertension Risk With Clinical Imbalanced Dataset,” Procedia Comput. Sci., vol. 234, pp. 645–653, 2024, doi: https://doi.org/10.1016/j.procs.2024.03.050.
W. Thungrut and N. Wattanapongsakorn, “Diabetes classification with fuzzy genetic algorithm,” Adv. Intell. Syst. Comput., vol. 769, pp. 107–114, 2019, doi: 10.1007/978-3-319-93692-5_11.
M. F. Ijaz, G. Alfian, M. Syafrudin, and J. Rhee, “Hybrid Prediction Model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, Synthetic Minority Over Sampling Technique (SMOTE), and random forest,” Appl. Sci., vol. 8, no. 8, 2018, doi: 10.3390/app8081325.
A. Abuashour, M. Salem Alzboon, M. Kamel Alqaraleh, and A. Abuashour, “Comparative Study of Classification Mechanisms of Machine Learning on Multiple Data Mining Tool Kits,” Am. J. Biomed. Sci. Tesearch, vol. 22, no. 1, pp. 33–43, 2024, doi: 10.34297/AJBSR.2024.22.002913.
M. Rashed-Al-Mahfuz, A. Haque, A. Azad, S. A. Alyami, J. M. W. Quinn, and M. A. Moni, “Clinically Applicable Machine Learning Approaches to Identify Attributes of Chronic Kidney Disease (CKD) for Use in Low-Cost Diagnostic Screening,” IEEE J. Transl. Eng. Heal. Med., vol. 9, no. December 2020, pp. 1–11, 2021, doi: 10.1109/JTEHM.2021.3073629.
M. Faid, M. Jasri, and T. Rahmawati, “Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi,” Teknika, vol. 8, no. 1, pp. 11–16, 2019, doi: 10.34148/teknika.v8i1.95.
A. Tejawati, H. S. Pakpahan, and W. Susantini, “Drugs Diagnose Level using Simple Multi-Attribute Rating Technique (SMART),” Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018, no. Double L, pp. 357–362, 2018, doi: 10.1109/EIConCIT.2018.8878564.
M. Ambika, G. Raghuraman, and L. SaiRamesh, “Enhanced decision support system to predict and prevent hypertension using computational intelligence techniques,” Soft Comput., vol. 24, no. 17, pp. 13293–13304, 2020, doi: 10.1007/s00500-020-04743-9.
H. Sulistiani, A. Syarif, K. Muludi, and Warsito, “Performance evaluation of feature selections on some ML approaches for diagnosing the narcissistic personality disorder,” Bull. Electr. Eng. Informatics, vol. 13, no. 2, pp. 1383–1391, 2024, doi: 10.11591/eei.v13i2.6717.
X. He et al., “Sample-efficient deep learning for COVID-19 diagnosis based on CT scans,” IEEE Trans. Med. Imaging, vol. XX, no. Xx, 2020, doi: 10.1101/2020.04.13.20063941.
M. Jasri, A. Wijaya, and R. Sunggara, “Penerapan Data Mining untuk Klasifikasi Penyakit Demam Berdarah Dengue (DBD) Dengan Metode Naïve Bayes (Studi Kasus Puskesmas Taman Krocok),” SMARTICS J., vol. 8, no. 1, pp. 35–42, 2022, [Online]. Available: https://doi.org/10.21067/smartics.v8i1.7375
M. Ohsaki, P. Wang, K. Matsuda, S. Katagiri, H. Watanabe, and A. Ralescu, “Confusion-matrix-based kernel logistic regression for imbalanced data classification,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 9, pp. 1806–1819, 2017, doi: 10.1109/TKDE.2017.2682249.
I. Düntsch and G. Gediga, “Confusion Matrices and Rough Set Data Analysis,” J. Phys. Conf. Ser., vol. 1229, no. 1, 2019, doi: 10.1088/1742-6596/1229/1/012055.
[ A. Aryanusa, “Evaluasi Kinerja Logistic Regression Dan Multinomial Naïve Bayes Dalam Klasifikasi Sentimen Mobile Banking,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 3S1, pp. 463–474, 2025, [Online]. Available: https://journal.eng.unila.ac.id/index.php/jitet/article/view/7687
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



