KLASIFIKASI POSE YOGA SURYA NAMASKAR MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK DENGAN ARSITEKTUR VGG19 DAN RESNET-50
DOI:
https://doi.org/10.23960/jitet.v14i1.8824Abstract Views: 44 File Views: 20
Keywords:
Deep Learning, CNN, VGG19, ResNet-50, Yoga Surya NamaskarAbstract
Penelitian ini bertujuan untuk membangun dan membandingkan kinerja model klasifikasi pose yoga Surya Namaskar menggunakan metode Deep Learning dengan arsitektur Convolutional Neural Network (CNN) VGG19 dan ResNet-50. Surya Namaskar merupakan rangkaian pose yoga yang populer, namun kesalahan postur tanpa pengawasan instruktur dapat berisiko cedera. Dataset yang digunakan terdiri dari 154 citra asli yang diaugmentasi menjadi 1.540 citra, terbagi dalam 7 kelas pose: Pranamasana, Hasta Utthanasana, Padahastasana, Ashwa Sanchalanasana, Parvatasana, Ashtanga Namaskara, dan Bhujangasana. Proses pelatihan dilakukan menggunakan optimizer Adam dengan variasi learning rate 0.0001, 0.00001, dan 0.00005. Hasil penelitian menunjukkan bahwa arsitektur ResNet-50 secara konsisten mengungguli VGG19. Kinerja terbaik dicapai oleh ResNet-50 pada learning rate 0.00005 dengan akurasi 85%, sedangkan akurasi terbaik VGG19 hanya mencapai 77% pada learning rate 0.0001. Penelitian menyimpulkan bahwa arsitektur ResNet-50 dengan residual connection lebih efektif dalam mengklasifikasikan pose yoga yang kompleks dibandingkan VGG19, meskipun masih terdapat tantangan dalam membedakan pose dengan kemiripan visual tinggi seperti Ashwa Sanchalanasana dan Bhujangasana.
Downloads
References
Y. Agrawal, Y. Shah, and A. Sharma, “Implementation of Machine Learning Technique for Identification of Yoga Poses,” in 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT), 2020, pp. 40–43. doi: 10.1109/CSNT.2020.08.
N. Rochmawati, H. B. Hidayati, Y. Yamasari, H. P. A. Tjahyaningtijas, W. Yustanti, and A. Prihanto, “Analisa Learning rate dan Batch size Pada Klasifikasi Covid Menggunakan Deep learning dengan Optimizer Adam,” Journal Information Engineering and Educational Technology, vol. 5, no. 2, pp. 44–48, 2021, doi: 10.26740/jieet.v5n2.p44-48.
L. P. Venkatesh and Vandhana S., “Insights on Surya namaskar from its origin to application towards health,” Apr. 01, 2022, Elsevier B.V. doi: 10.1016/j.jaim.2021.10.002.
A. Anilkumar, Athulya K.T., S. Sajan, and Sreeja K.A., “Pose Estimated Yoga Monitoring System,” in 2 nd International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS 2021) , 2021, pp. 1–8. [Online]. Available: https://ssrn.com/abstract=3882498
A. Akram, S. A. Rachmadinasya, F. H. Melvandino, and H. Ramza, “Klasifikasi Aktivitas Olahraga Berdasarkan Citra Foto Dengan Menggunakan Metode Convolutional Neural Network,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, pp. 2830–7062, 2023, doi: 10.23960/jitet.v11i3%20s1.3496.
I. G. L. T. Sumantara, M. W. A. Kesiman, and I. M. G. Sunarya, “Comparative Analysis of CNN Methods for Periapical Radiograph Classification,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 13, no. 2, pp. 204–214, Jul. 2024, doi: 10.23887/janapati.v13i2.71664.
D. Shrestha, P. Nepal, P. Gautam, P. Oli, and S. Bhattarai, “Human Pose Estimation for Physical Exercises using 10 layers of VGG-19 and COCO Dataset (July 2022),” 2022. doi: 10.13140/RG.2.2.28632.16648.
K. R. M. Manikam, L. J. E. Dewi, K. Y. E. Aryanto, K. A. Seputra, and P. Varnakovida, “Analisis Hyperparameter Pada Klasifikasi Jenis Tanaman Menggunakan Algoritma ResNet50 Dan MobileNetV2,” Jurnal Mahasiswa Teknik Informatika, vol. 9, no. 6, pp. 9921–9928, 2025.
I. M. G. Sunarya, I. W. Treman, and P. Z. E. S. Nugraha, “Classification of Rice Growth Stage on UAV Image Based on Convolutional Neural Network Method,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 12, no. 1, pp. 146–155, May 2023, doi: 10.23887/janapati.v12i1.60959.
S. Biswas, A. Ghildiyal, and S. Sharma, “Classification of Indian Dance Forms using Pre-Trained Model-VGG,” in 2021 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 278–282. doi: 10.1109/WiSPNET51692.2021.9419426.
P. K. Sahoo et al., “An Improved VGG-19 Network Induced Enhanced Feature Pooling For Precise Moving Object Detection In Complex Video Scenes,” IEEE Access, vol. 12, pp. 45847–45864, 2024, doi: 10.1109/ACCESS.2017.DOI.
G. A. Pratama, E. Y. Puspaningrum, and H. Maulana, “Convolutional Neural Network Dan Faster Region Convolutional Neural Network Untuk Klasifikasi Kualitas Biji Kopi Arabika,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, pp. 2776–2785, Aug. 2024, doi: 10.23960/jitet.v12i3.4887.
C. E. Nainggolan, M. Nasir, Fatoni, and D. Udariansyah, “Perbandingan Klasifikasi Jenis Sampah Menggunakan Convolutional Neural Network Dengan Arsitektur ResNet18 dan ResNet50,” Computer Science Research and Its Development Journal, vol. 1, no. 1, pp. 1–14, 2021, doi: 10.22303/csrid.1.1.2022.01-10.
S. Mascarenhas and M. Agarwal, “A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification,” in Proceedings of IEEE International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications, CENTCON 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 96–99. doi: 10.1109/CENTCON52345.2021.9687944.
A. Sachan and Geeta, “Surya Namaskar: Its Techniques and Health Benefits,” Indian Journal of Natural Sciences, vol. 12, no. 67, pp. 32393–32396, 2021, Accessed: Dec. 31, 2025. [Online]. Available: https://www.researchgate.net/profile/Anurag-Sachan-4/publication/357299181_Surya_Namaskar_Its_Techniques_and_Health_Benefits/links/61e6ee4b5779d35951b932c9/Surya-Namaskar-Its-Techniques-and-Health-Benefits.pdf
D. Kumar and A. Sinha, “Yoga Pose Detection and Classification Using Deep Learning,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 6, no. 6, pp. 160–184, Nov. 2020, doi: 10.32628/cseit206623.
I. M. K. Karo et al., “Comparison of Activation Functions on Convolutional Neural Networks (CNN) to Identify Mung Bean Quality,” Sinkron : Jurnal dan Penelitian Teknik Informatika, vol. 8, no. 4, pp. 2757–2764, Oct. 2023, doi: 10.33395/sinkron.v8i4.13107.
D. A. Pusparani, M. W. A. Kesiman, and K. Y. E. Aryanto, “Identification of Little Tuna Species Using Convolutional Neural Networks (CNN) Method and ResNet-50 Architecture,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 8, no. 1, p. 86, Dec. 2024, doi: 10.24014/ijaidm.v8i1.31620.
S. Amir, Faturrahman, and Hendra, “Hand posture classification with convolutional neural networks on VGG-19 net Architecture,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Oct. 2020, pp. 1–8. doi: 10.1088/1755-1315/575/1/012186.
I. P. A. Suputra, I. G. A. Gunadi, and I. M. G. Sunarya, “Hyperparameter Optimization with MobileNet Architecture and VGG Architecture for Urban Traffic Density Classification Using Bali Camera Image Data,” Sinkron : Jurnal dan Penelitian Teknik Informatika, vol. 9, no. 3, pp. 1132–1145, Jul. 2025, doi: 10.33395/sinkron.v9i3.14971.
D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer,” in 5th International Conference on Computer Science and Computational Intelligence 2020, Elsevier B.V., 2021, pp. 423–431. doi: 10.1016/j.procs.2021.01.025.
I. P. W. Prasetia and I. M. G. Sunarya, “Image Classification of Balinese Seasoning Base Genep Based on Deep Learning,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 13, no. 1, pp. 79–90, Mar. 2024, doi: 10.23887/janapati.v13i1.67967.
N. K. R. Mirayanti, Sariyasa, and I. G. A. Gunadi, “Batch size and learning rate effect in covid-19 classification using CNN,” Jurnal Mantik, vol. 7, no. 3, pp. 1752–1765, 2023, doi: 10.26740/jieet.v5n2.p44-48.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



