PERBANDINGAN AKURASI TESSERACT DAN EASYOCR SEBELUM DAN SESUDAH PRAPEMROSESAN PADA CITRA NOTA

Authors

  • Khinanti Angelita Puteri IPB University
  • Faliana Alifia IPB University
  • Puti Aisyah Lailatulrahmi IPB University
  • Gema Parasti Mindara IPB University
  • Endang Purnama Giri IPB University

DOI:

https://doi.org/10.23960/jitet.v14i1.8603

Abstract Views: 67 File Views: 34

Keywords:

Character Error Rate;, EasyOCR, Nota Transaksi, Optical Character Recognition, Prapemrosesan Citra

Abstract

Pengenalan teks pada citra nota menggunakan Optical Character Recognition (OCR) masih relevan diteliti karena tingginya variasi kualitas citra. Penelitian ini mengevaluasi kinerja Tesseract dan EasyOCR dalam mengenali teks pada citra nota dengan beberapa metode prapemrosesan. Dataset berasal dari Kaggle dengan 50 sampel citra yang dipilih menggunakan stratified sampling. Pengujian dilakukan dengan menghitung Character Error Rate (CER) antara hasil OCR dan ground truth. Hasil menunjukkan nilai CER berada pada kisaran 18%–25%, dengan performa terbaik Tesseract pada mode denoise dan EasyOCR pada mode grayscale. Metode threshold memberikan penurunan akurasi paling signifikan. Kualitas citra dan jenis prapemrosesan terbukti memengaruhi kinerja OCR, sehingga pemilihan prapemrosesan yang tepat sangat penting dalam meningkatkan akurasi pengenalan teks pada citra nota.

Downloads

Download data is not yet available.

References

A. Rexhepi, E. Hasi, A. Haxholli, and E. Bytyçi, “Invoice and receipt optical character recognition: review on current methods and future trends”.

M. Kumar, Shalu, A. Dureja, R. Narula, Shyla, and R. Arora, “OCR-CRNN (WBS): an optical character recognition system based on convolutional recurrent neural network embedded with word beam search decoder for extraction of text,” Int. J. Inf. Technol., vol. 17, no. 7, pp. 4013–4020, Sept. 2025, doi: 10.1007/s41870-025-02540-x.

A. Akoushideh, A. Ranjkesh Rashtehroudi, and A. Shahbahrami, “Persian/Arabic Scene Text Recognition With Convolutional Recurrent Neural Network,” IET Smart Cities, vol. 7, no. 1, p. e70001, Jan. 2025, doi: 10.1049/smc2.70001.

A. Yadav, S. Singh, M. Siddique, N. Mehta, and A. Kotangale, “OCR using CRNN: A Deep Learning Approach for Text Recognition,” in 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India: IEEE, May 2023, pp. 1–6. doi: 10.1109/INCET57972.2023.10170436.

K. Maliński and K. Okarma, “Analysis of Image Preprocessing and Binarization Methods for OCR-Based Detection and Classification of Electronic Integrated Circuit Labeling,” Electronics, vol. 12, no. 11, p. 2449, May 2023, doi: 10.3390/electronics12112449.

H. T. Ha and A. Horák, “Information extraction from scanned invoice images using text analysis and layout features,” Signal Process. Image Commun., vol. 102, p. 116601, Mar. 2022, doi: 10.1016/j.image.2021.116601.

D. R. Vedhaviyassh, R. Sudhan, G. Saranya, M. Safa, and D. Arun, “Comparative Analysis of EasyOCR and TesseractOCR for Automatic License Plate Recognition using Deep Learning Algorithm,” in 2022 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India: IEEE, Dec. 2022, pp. 966–971. doi: 10.1109/ICECA55336.2022.10009215.

A. Aprilino and I. H. Al Amin, “Implementasi Algoritma YOLO dan Tesseract OCR pada Sistem Deteksi Plat Nomor Otomatis,” J. Teknoinfo, vol. 16, no. 1, p. 54, Jan. 2022, doi: 10.33365/jti.v16i1.1522.

R. I. Indrakusuma, A. S. Ahmadiyah, and N. F. Ariyani, “Pengenalan dan Klasifikasi Tulisan pada Nota Pembelian Material (Studi Kasus Proyek Konstruksi),” J. Tek. ITS, vol. 10, no. 2, pp. A478–A483, Dec. 2021, doi: 10.12962/j23373539.v10i2.77109.

U. P. Sanjaya, Z. Alawi, A. R. Zayn, and G. P. Dirgantoro, “Optimasi Convolutional Neural Network dengan Standard Deviasi untuk Klasifikasi Pneumonia pada Citra X-rays Paru,” Gener. J., vol. 7, no. 3, pp. 40–47, Oct. 2023, doi: 10.29407/gj.v7i3.20183.

K. A. Nugraha, “Penerapan Optical Character Recognition untuk Pengenalan Variasi Teks pada Media Presentasi Pembelajaran”.

O. Rahmdani, “Evaluasi Kinerja Tesseract-OCR dalam Pengenalan Teks Tulisan Tangan Menggunakan Dataset Kustom,” J. Inform. Dan Tek. Elektro Terap., vol. 13, no. 3, July 2025, doi: 10.23960/jitet.v13i3.7162.

Muhammad Hafizh Husein and Imelda Imelda, “Deteksi Pelanggar Garis Marka Pada Traffic Light Dengan Metode Haar Cascade Dan Easyocr,” J. Ticom Technol. Inf. Commun., vol. 13, no. 1, pp. 45–49, Sept. 2024, doi: 10.70309/ticom.v13i1.141. [7]S. A. Nugroho, N. Kholis, Endryansyah, and F. Baskoro, Rancang Bangun Sistem Deteksi Label Kardus Berbasis Model Kecerdasan Buatan YOLO dan EasyOCR serta ESP32-CAM

F. Hidayat, “Perbandingan Kualitas Hasil Cetakan Nota Struk Belanja Menggunakan Metode Optical Character Recognition (OCR) pada Capstone Project Kantongin.”

S. Kumar, Computer Science And Engineering Department, ABES Institute Of Technology, Ghaziabad, India., R. Jaiswal, Prof. S. Kumar, and Computer Science And Engineering Department, ABES Institute Of Technology, Ghaziabad, India., “Improve OCR Accuracy with Advanced Image Preprocessing using Machine Learning with Python,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 7, pp. 1026–1030, May 2020, doi: 10.35940/ijitee.G5745.059720.

S. Sutriawan, A. Kurniawan, and R. Rosyid, “Improving the Quality of Optical Character Recognition (OCR) Based on Neural Network with the Image Enhancement Process,” Sci. J. Comput. Sci. Inform., vol. 1, no. 2, pp. 58–67, July 2024, doi: 10.34304/scientific.v1i2.334.

I. Singh, M. Colom, and K. Bontcheva, “A Comparative Analysis of OCR Models on Diverse Datasets: Insights from Memes and Hiertext Dataset”.

R. H. Sukarna, F. Safira, and H. D. Marzuliyanti, “Studi Komparatif Model OCR Berbasis AI untuk Dokumen Cetak dan Tulisan Tangan,” 2025.

N. Shabbir, R. Ahmed, M. W. Raza, A. Zeb, H. Elahi, and H. Waheed, “Comparative Performance and Resource Utilization Analysis of OCR Models for Number Plate Recognition on Raspberry Pi 4,” in 2025 International Conference on Communication Technologies (ComTech), Rawalpindi, Pakistan: IEEE, Apr. 2025, pp. 1–6. doi: 10.1109/ComTech65062.2025.11034455.

Beatriz Martínez Tornés et al., “Find it again! Dataset.” Kaggle. doi: 10.34740/KAGGLE/DSV/11192869.

Downloads

Published

2026-01-18

How to Cite

Puteri, K. A. ., Alifia, F. ., Lailatulrahmi, P. A. ., Mindara, G. P., & Giri, E. P. (2026). PERBANDINGAN AKURASI TESSERACT DAN EASYOCR SEBELUM DAN SESUDAH PRAPEMROSESAN PADA CITRA NOTA. Jurnal Informatika Dan Teknik Elektro Terapan, 14(1). https://doi.org/10.23960/jitet.v14i1.8603

Issue

Section

Articles