KLASIFIKASI KONDISI MENTAL MAHASISWA DARI CITRA EKSPRESI WAJAH DEEP SIAMESE NETWORK
DOI:
https://doi.org/10.23960/jitet.v14i1.8362Abstract Views: 28 File Views: 15
Keywords:
Deteksi Mental Dini; Ekspresi Wajah; Deep Siamese Network; EmosiAbstract
Kesehatan mental mahasiswa merupakan aspek penting yang perlu diperhatikan seiring meningkatnya tekanan akademik, sosial, maupun emosional yang mereka hadapi. Deteksi dini kondisi mental masih banyak mengandalkan metode konvensional seperti kuesioner, yang dinilai kurang efisien dan bersifat subjektif. Untuk mengatasi hal tersebut, penelitian ini mengusulkan pendekatan baru dengan memanfaatkan Deep Siamese Network (DSN) guna mengklasifikasikan kondisi mental mahasiswa berdasarkan ekspresi wajah. Dataset citra wajah dikumpulkan dari mahasiswa dengan berbagai ekspresi, kemudian dikategorikan ke dalam tiga kondisi mental utama, yaitu normal, cemas, dan stres. DSN digunakan untuk mengukur tingkat kemiripan antar ekspresi wajah sehingga mampu membedakan kondisi mental berdasarkan pola visual yang halus. Proses penelitian meliputi tahap preprocessing citra, ekstraksi fitur, pembentukan pasangan data, pelatihan model, serta evaluasi menggunakan metrik akurasi. Hasil pengujian menunjukkan bahwa sistem yang dibangun mampu mencapai tingkat akurasi 89%, sehingga dinilai cukup andal untuk dijadikan alat bantu dalam pemantauan kesehatan mental mahasiswa secara real-time.
Downloads
References
L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-convolutional siamese networks for object tracking,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9914 LNCS, pp. 850–865, 2016, doi: 10.1007/978-3- 319-48881-3_56.
D. I. Mulyana, A. Sufriman, and M. B. Yel, “IMPLEMENTASI DETEKSI EMOSIONAL PADA WAJAH MENGGUNAKAN DEEP LEARNING - YOLOv5,” JUTECH J. Educ. Technol., vol. 4, no. 1, pp. 12–22, 2023, doi: 10.31932/jutech.v4i1.2174.
F. L. Le Yang , Yiming Chen , Shiji Song and AndGaoHuang, “Sensing Images,” pp. 1–19, 2021..
P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, pp. 12–21, 2020.
Y. Li, X. Zhang, and D. Chen, “SiamVGG: Visual Tracking using Deeper Siamese Networks,” pp. 1–18, 2019, [Online]. Available: http://arxiv.org/abs/1902.02804
M RIZQI ARIEL GIFFARI, “Analisis Sentimen Berbasis Aspek Pada,” vol. 3, no. September, pp. 67–77, 2021.
M. Wang, K. Tan, X. Jia, X. Wang, and Y. Chen, “A deep Siamese network with hybrid convolutional feature extraction module for change detection based on multi-sensor remote sensing images,” Remote Sens., vol. 12, no. 2, 2020, doi: 10.3390/rs12020205.
P. Goncharov, A. Uzhinskiy, G. Ososkov, A. Nechaevskiy, and J. Zudikhina, “Deep Siamese Networks for Plant Disease Detection,” EPJ Web Conf., vol. 226, p. 03010, 2020, doi: 10.1051/epjconf/202022603010.
M. R. Edy, “Deteksi Emosi dari Ekspresi Wajah dengan Deep Learning,” Inf. Technol. Educ. J., vol. 3, no. 2, pp. 116–123, 2024, [Online]. Available: https://journal.unm.ac.id/index.php/INTEC/article/view/2866
J. Yu, M. Li, X. Hao, and G. Xie, “Deep Fusion Siamese Network for Automatic Kinship Verification,” Proc. - 2020 15th IEEE Int. Conf. Autom. Face Gesture Recognition, FG 2020, pp. 892–899, 2020, doi: 10.1109/FG47880.2020.00127.
H. Lee et al., “Local Similarity Siamese Network for Urban Land Change Detection on Remote Sensing Images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 4139–4149, 2021, doi: 10.1109/JSTARS.2021.3069242.
K. Zhu et al., “Single object tracking in satellite videos: Deep network incorporating an interframe difference centroid inertia motion model,” Remote Sens., vol. 13, no. 7, 2021, doi: 10.3390/rs13071298.
I. Azhar and Fitriyani, “Implementasi Algoritma Convolutional Neural Network Dalam Deteksi Emosi Manusia Berdasarkan Ekspresi Wajah,” eProsiding Tek. Inform., vol. 1, no. 1, pp. 112–118, 2021, [Online].
M. Mohammed Kataa and W. Kaur, “Recognizing Facial Emotion in Real- Time Using MuWNet a Novel Deep Learning Network,” Asia-Pacific J. Inf. Technol. Multimed., vol. 13, no. 01, pp. 01–20, 2024, doi: 10.17576/apjitm-2024-1301-01.
J. Chen, D. Wei, T. Long, T. Luo, and H. Wang, “Pest classification based on convolutional neural network,” J. Chinese Agric. Mech., vol. 43, no. 11,
S. Rahmadani, Cicih Sri Rahayu, Agus Salim, and Karno Nur Cahyo, “Deteksi Emosi Berdasarkan Wicara Menggunakan Deep Learning Model,”J. Inform. Teknol. dan Sains, vol. 4, no. 3, pp. 220–224, 2022, doi: 10.51401/jinteks.v4i3.1952.
C. Fu et al., “Siamese object tracking for unmanned aerial vehicle: a review and comprehensive analysis,” Artif. Intell. Rev., vol. 56, no. X, pp. 1417– 1477, 2023, doi: 10.1007/s10462-023-10558-5.
C. Abeysinghe, I. Perera, and D. A. Meedeniya, “Capsule Networks for Character Recognition in Low Resource Languages,” Mach. Vis. Insp. Syst. Vol. 2 Mach. Learn. Approaches, vol. 2, pp. 23–46, 2021, doi: 10.1002/9781119786122.ch2.
S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi: 10.1109/LGRS.2021.3056416.
N. Y. Pradanya, “PENERAPAN ASYMMETRIC WINDOWING RECURRENCE PLOTS DALAM ENCODING SINYAL JANTUNG UNTUK KLASIFIKASI EMOSI MENGGUNAKAN DEEP LEARNING Noan Yaseka Pradanya, Ir. Noor Akhmad Setiawan, S.T., MT., Ph.D., IPM. ; Dra. Sri Kusrohmaniah, M.Si., Ph.D., Ps,” 2024.
D. I. Mulyana and S. F. Banase, “Jurnal JTIK ( Jurnal Teknologi Informasi dan Komunikasi ) Optimasi Deteksi Gerak Bahasa Isyarat dan Ekpresi Wajah Real,” vol. 9, no. March, pp. 277–284, 2025.
H. Jain, G. Harit, and A. Sharma, “Action Quality Assessment Using Siamese Network-Based Deep Metric Learning,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 6, pp. 2260–2273, 2021, doi: 10.1109/TCSVT.2020.3017727.
B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “SIAMRPN++: Evolution of siamese visual tracking with very deep networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2020-June, pp. 4277–4286, 2020, doi: 10.1109/CVPR.2019.00441.
A. Kumar, Visual Object Tracking Using Deep Learning. Boca Raton, FL, USA: CRC Press, 2023.
W. Xing, W. Liu, J. Wang, S. Zhang, L. Wang, Y. Yang, and B. Song, Visual Object Tracking from Correlation Filter to Deep Learning. Singapore: Springer Nature Singapore, 2021.
I. S. Panggalo, S. K. Arta, S. N. Qarimah, M. R. F. Adha, R. D. Laksono, K. Aini, S. A. C. Kirana, and L. Judijanto, Kesehatan Mental. Jakarta, Indonesia: PT. Sonpedia Publishing Indonesia, 2024.
P. Angelov, A. Papaleonidas, C. Jayne, and L. Iliadis, Artificial Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part IV. Cham, Switzerland: Springer Nature Switzerland, 2023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



