APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO IDENTIFY DISEASES IN BROILER CHICKENS USING THE BACKPROPAGATION METHOD
DOI:
https://doi.org/10.23960/jitet.v14i1.8322Abstract Views: 83 File Views: 50
Keywords:
Artificial Neural Network; Backpropagation Method; Image Data; MatlabAbstract
Artificial neural networks can be applied in the health sector. In this research, artificial neural networks were used to identify diseases in broiler chickens using the Backpropagation method. Diseases in chickens include salmonella, cocidiossis, and new castle disease. Identification of diseases in chickens based on image data from chicken droppings. The method used is backpropagation or error propagation. The data used in this research was 700 image data. The data in this research was obtained from Kaggle. The best accuracy results were obtained with a total of 600 data with 1000 iterations, and an alpha value of 0.9 obtained testing accuracy results of 90% with an error value of 10%. The accuracy results of artificial neural networks are influenced by the amount of training data. The more data used, the higher the accuracy results.
Downloads
References
Li. Mifeng, "Comprehensive Review of Backpropagation Neural Networks, Academic Journal of Science and Technology, 9(1), 150-154 2024.
F. F. Mojtahedi, N. Yousefpour, S. H. Chow, et al., “Deep Learning for Time Series Forecasting: Review and Applications in Geotechnics and Geosciences,” Archives of Computational Methods in Engineering, vol. 32, pp. 3415–3445, 2025.
P. Rech, et al., “Exploiting Neural Networks Bit-Level Redundancy to Mitigate the Impact of Faults at Inference,” The Journal of Supercomputing, vol. 81, p. 183, 2024.
A. Kumar, et al., “Mathematical Formulation of Deep Learning Model for Poultry Disease Classification using EfficientNet-B3 CNN Model,” Communications on Applied Nonlinear Analysis, vol. 31, no. 2s, 2024.
D. Machuve, E. Nwankwo, N. Mduma, and J. Mbelwa, “Poultry diseases diagnostics models using deep learning,” Frontiers in Artificial Intelligence, vol. 5, 2022.
A. F. Pramesti and D. Suhendro, “Jaringan Saraf Tiruan untuk Memprediksi Permohonan Instalasi Listrik Menggunakan Algoritma Backpropagation,” Jurnal Informatika dan Teknik Elektro Terapan (JITET), vol. 12, no. 3, pp. 315–348, 2024
D. Mienye and T. G. Swart, “A Comprehensive Review of Deep Learning: Architectures, Recent Advances, and Applications,” Information, vol. 15, no. 12, 2024.
I. Pamungkas, S. Sumadi, and S. Alam, “Studi Komparasi Fungsi Aktivasi Sigmoid Biner, Sigmoid Bipolar dan Linear pada Jaringan Syaraf Tiruan dalam Menentukan Warna RGB Menggunakan Matlab,” Jurnal Serambi Engineering, vol. VII, no. 4, pp. 3749-3758, Okt. 2022
S. R. Dubey, “Activation Functions in Deep Learning: A Comprehensive Survey,” Neural Networks, vol. 162, pp. 344–372, 2023.
I M. Ichwan and S. F. Alfarisyi, “Pemodelan Ritme Kalori Terbakar Setiap Waktu Selama Bersepeda dengan Feedforward Neural Network,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 12, no. 1, pp. 13-22, Jan. 2024.
K. Kurniawan, B. Ceasaro, and S. Sucipto, “Perbandingan Fungsi Aktivasi Untuk Meningkatkan Kinerja Model LSTM Dalam Prediksi Ketinggian Air Sungai Kapuas,” JEPIN: Jurnal Edukasi dan Penelitian Informatika, vol. 10, no. 1, Apr. 2024.
A. Saputra, S. R. Sulistiyanti, R. Marjunus, Y. Yulianti, and A. Surtono, “Penerapan Jaringan Syaraf Tiruan / JST (Backpropagation) untuk Prakiraan Cuaca di Bandar Udara Radin Inten II Lampung,” Jurnal Teori dan Aplikasi Fisika, vol. 11, no. 1, Jan. 2023.
L. Anas Zahir and M. Muhlis, “Jaringan Syaraf Tiruan (Neural Network) untuk Estimasi Produktivitas Pekerja Konstruksi,” Jurnal DAKTILITAS, vol. 2, no. 2, pp. 142-153, Des. 2022.
X. Zhang, Y. Wang, and J. Liu, “A Review of Convolutional Neural Networks in Computer Vision,” Neural Computing and Applications, vol. 36, no. 14, pp. 11265–11290, 2024.
W. Boulila, “An Effective Weight Initialization Method for Deep Learning: Application to Satellite Image Classification,” Expert Systems with Applications, vol. 211, pp. 124344–124360, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



