PENINGKATAN JANGKAUAN TELEMETRY UAV MENGGUNAKAN ANTENA YAGI 433 MHz DILENGKAPI PELACAK OTOMATIS BERBASIS GPS

Authors

  • Aditya Putra Pradinawan Politeknik Negeri Semarang
  • Eni Dwi Wardihani Politeknik Negeri Semarang
  • Eddy Triyono Politeknik Negeri Semarang
  • Magfur Ramdhani Politeknik Negeri Semarang

DOI:

https://doi.org/10.23960/jitet.v14i1.8229

Abstract Views: 82 File Views: 42

Keywords:

Yagi Antenna, MWSN, Telemetry, Mission Planner, UAV

Abstract

Abstrak Penelitian ini membahas perancangan, pengembangan, dan evaluasi sistem antena directional Yagi yang terintegrasi dengan pelacak otomatis berbasis GPS untuk meningkatkan jangkauan komunikasi pada Mobile Wireless Sensor Networks (MWSN) berbasis Unmanned Aerial Vehicle (UAV) pada frekuensi 433 MHz. Antena Yagi-Uda 8 elemen dirancang menggunakan perangkat lunak YagiCAD dan dibuat dari pipa aluminium berdiameter 0,89 cm, menghasilkan gain sebesar 13,75 dBi. Sistem ini diuji melalui simulasi dan pengujian langsung di lapangan dengan pengukuran VSWR, RSSI, dan RSL. VSWR awal perancangan adalah 1,5 dan berhasil diturunkan menjadi 1,05 setelah penyempurnaan struktural. Hasil pengujian lapangan menunjukkan jangkauan maksimum sebesar 96,43 meter dengan daya pancar hanya 1 dBm, serta kestabilan sinyal yang lebih baik dibandingkan konfigurasi antena omnidireksional. Dibandingkan antena bawaan, sistem ini meningkatkan jangkauan hingga lima kali lipat dan tetap bekerja andal pada daya sangat rendah, meskipun kemampuan perangkat telemetri dapat memancarkan hingga 20 dBm. Penelitian ini menawarkan solusi untuk peningkatan performa telemetri UAV serta memiliki potensi aplikasi di jaringan LPWAN, pemantauan lingkungan terpencil, dan integrasi sistem IoT.

Abstract This research discusses the design, development, and evaluation of a directional Yagi antenna system integrated with a GPS-based automatic tracker to enhance communication range in Mobile Wireless Sensor Networks (MWSN) based on Unmanned Aerial Vehicle (UAV) at the 433 MHz frequency. The 8-element Yagi-Uda antenna was designed using the YagiCAD software and constructed from aluminum pipes with a diameter of 0.89 cm, yielding a gain of 13.75 dBi. The system was tested through simulation and direct field trials, involving measurements of Voltage Standing Wave Ratio (VSWR), Received Signal Strength Indicator (RSSI), and Received Signal Level (RSL). The initial VSWR of 1.5 was successfully reduced to 1.05 after structural refinement. The test results showed a maximum range of 96.43 meters with a transmit power of only 1 dBm, along with better signal stability compared to the omnidirectional antenna configuration. Compared to the stock (built-in) antenna, this system increases the range up to fivefold and remains reliable even at very low power, however the telemetry device's capability to transmit up to 20 dBm. This research offers solution for improving UAV telemetry performance and has potential applications in Low-Power Wide-Area Network (LPWAN), remote environmental monitoring, and Internet of Things (IoT) system integration

Downloads

Download data is not yet available.

Author Biography

Aditya Putra Pradinawan, Politeknik Negeri Semarang

Aditya Putra Pradinawan received the bachelor of telecommunication engineering from Politeknik Negeri Semarang, Indonesia in 2016. He obtained his master degree from Politeknik Negeri Semarang, Indonesia in 2020. He has been a lecturer in the Telecommunication Engineering Department at Politeknik Negeri Semarang Indonesia since 2025. He is interested in conducting research in the fields of antennas, electronics, and IoT. He can be contacted at email: aditya.putra@polines.ac.id

References

C. C. Chan, S. A. Alvi, X. Zhou, S. Durrani, N. Wilson, and M. Yebra, “A Survey on IoT Ground Sensing Systems for Early Wildfire Detection: Technologies, Challenges, and Opportunities,” IEEE Access, vol. 12, pp. 172785–172819, 2024, doi: 10.1109/ACCESS.2024.3501336.

E. D. Wardihani et al., “REAL-TIME FOREST FIRE MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE,” J. Eng. Sci. Technol., vol. 13, no. 6, pp. 1587–1594, 2018.

J. Valente, D. Sanz, A. Barrientos, J. D. Cerro, Á. Ribeiro, and C. Rossi, “An Air-Ground Wireless Sensor Network for Crop Monitoring,” Sensors, vol. 11, no. 6, pp. 6088–6108, June 2011, doi: 10.3390/s110606088.

M. A. Al-Shareeda, M. A. Saare, and S. Manickam, “Unmanned aerial vehicle: a review and future directions,” Indones. J. Electr. Eng. Comput. Sci., vol. 30, no. 2, p. 778, May 2023, doi: 10.11591/ijeecs.v30.i2.pp778-786.

B. Nursakinah, K. Syafitri, M. A. Wijaya, and F. Fahlapi, “ANALISIS PENGARUH JARAK DAN HALANGAN PADA TRANSMISII DATA JARINGAN NIRKABEL DENGAN MENGGUNAKAN METODE SIGNAL- TO- NOISE RATIO (SNR),” JUTECH J. Educ. Technol., vol. 6, no. 1, pp. 183–197, June 2025, doi: 10.31932/jutech.v6i1.4955.

N. Chasanah, I. Rismayanti, W. Try Kusuma, F. S. Pranoto, Y. Prabowo, and D. Kusumoaji, “Performance Investigation of Link Failure Line-of-Sight (LOS) Communication UAV,” in 2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia: IEEE, Nov. 2022, pp. 1–6. doi: 10.1109/ICARES56907.2022.9993526.

E. R. Juma, “IMPLEMENTASI DAN ANALISIS KINERJA SISTEM AUTOMATIC TRACKING CONTROL POLARISASI ANTENA PENERIMA FREKUENSI 433 MHz BERBASIS GPS,” E-Proceeding Eng., vol. Vol.2, no. 1, pp. 185–192, Apr. 2015.

A. Azhar, S. M. A. Sasongko, and D. F. Budiman, “IMPLEMENTASI PURWARUPA WIRELESS SENSOR NETWORK UNTUK MONITORING DAN PENYIRAMAN OTOMATIS PADA TANAMAN MINT MENGGUNAKAN ESP32 BERBASIS IoT-LoRa,” J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4678.

R. Candra and B. Busran, “IMPLEMENTASI JARINGAN WSN PADA SISTEM DETEKSI BANJIR MENGUNAKAN MODUL NRF24L01 PA + NA,” J. Inform. Dan Tek. Elektro Terap., vol. 13, no. 3S1, Oct. 2025, doi: 10.23960/jitet.v13i3S1.7624.

A. N. S.T., M.Eng., M. G. Zaki, D. R. Hidayatulloh, and R. F. Mubarak, “RANCANG BANGUN QUADCOPTER MODULAR SEBAGAI WAHANA PEMBAWA BANNER,” J. Inform. Dan Tek. Elektro Terap., vol. 13, no. 1, Jan. 2025, doi: 10.23960/jitet.v13i1.5751.

I. Khoerunnisa, A. F. Ikhsan, and A. Hasyim, “Perancangan dan Analisis Antena Yagi-Uda pada Frekuensi 433 Mhz untuk Sistem Komunikasi Radiosonde dan Ground Control Station (GCS),” Fuse-Tek. Elektro, vol. 1, no. 1, p. 15, June 2021, doi: 10.52434/jft.v1i1.1152.

D. H. T. Nugroho and M. F. Hasan, “RANCANG BANGUN ANTENA YAGI 433 MHZ PADA AUTOMATIC ANTENNA TRACKER UNTUK PESAWAT TERBANG TANPA AWAK,” J. Ecotipe Electron. Control Telecommun. Inf. Power Eng., vol. 7, no. 1, pp. 20–25, Apr. 2020, doi: 10.33019/ecotipe.v7i1.1390.

G. Nugroho and D. Dectaviansyah, “Design, manufacture and performance analysis of an automatic antenna tracker for an unmanned aerial vehicle (UAV),” J. Mechatron. Electr. Power Veh. Technol., vol. 9, no. 1, pp. 32–40, July 2018, doi: 10.14203/j.mev.2018.v9.32-40.

M. Melvi et al., “Perancangan Antena Yagi Gain Tinggi Pada Ground Control Station Wahana Udara Nirawak,” J. Rekayasa Elektr., vol. 16, no. 3, Dec. 2020, doi: 10.17529/jre.v16i3.18682.

D. Tyrovolas, S. A. Tegos, P. D. Diamantoulakis, and G. K. Karagiannidis, “Synergetic UAV-RIS Communication with Highly Directional Transmission,” 2021, arXiv. doi: 10.48550/ARXIV.2106.10034.

F. Octaviani and H. Abrianto, “RANCANG BANGUN DAN IMPLEMENTASI ANTENA YAGI UDA UNTUK KOMUNIKASI JARINGAN WLAN,” SINUSOIDA, vol. 20, no. 4, pp. 41–51, Oct. 2018, doi: 10.37277/s.v20i4.820.

D. N. Rokhman, A. R. Darlis, and L. Lidyawati, “IMPLEMENTASI ANTENA YAGI 5 ELEMEN SEBAGAI PENERIMA SIARAN TELEVISI DI BANDUNG KOTA,” J. Elektro Dan Telekomun. Terap., vol. 3, no. 1, Aug. 2016, doi: 10.25124/jett.v3i1.128.

A. Saputra, H. Hanesman, and S. Sukaya, “ANALISIS PENGARUH SPACING ANTAR ELEMEN TERHADAP GAIN PADA ANTENA YAGI 5 ELEMEN FREKUENSI 2,4 GHz,” Voteteknika Vocat. Tek. Elektron. Dan Inform., vol. 3, no. 1, Sept. 2015, doi: 10.24036/voteteknika.v3i1.5178.

S. Triyadi, D. Suryadi, N. Tjahjamooniarsih, and J. H. H. Nawawi, “RANCANG BANGUN ANTENA YAGI MODIFIKASI DENGAN FREKUENSI 2,4 GHZ UNTUK MENINGKATKAN DAYA TERIMA WIRELESS USB ADAPTER TERHADAP SINYAL WIFI,” J. Electr. Eng. Energy Inf. Technol., vol. 5, no. 3, July 2017, doi: 10.26418/j3eit.v5i3.20668.

M. Arrofiq and A. Fauzi, “Received Signal Level (RSL) Strength Assessment of 2.4 GHz in A Hotel Meeting Room,” J. Internet Softw. Eng., vol. 1, no. 1, p. 8, Dec. 2020, doi: 10.22146/jise.v1i1.762.

“Received Signal Strength Indication (RSSI) — Copter documentation.” Accessed: Oct. 25, 2025. [Online]. Available: https://ardupilot.org/copter/docs/common-rssi-received-signal-strength-indication.html

Oscar, “LQ and RSSI Explained for ExpressLRS and Crossfire Radio Links,” Oscar Liang. Accessed: Oct. 25, 2025. [Online]. Available: https://oscarliang.com/lq-rssi/

Downloads

Published

2026-01-17

How to Cite

Pradinawan, A. P., Wardihani, E. D., Triyono, E. ., & Ramdhani, M. (2026). PENINGKATAN JANGKAUAN TELEMETRY UAV MENGGUNAKAN ANTENA YAGI 433 MHz DILENGKAPI PELACAK OTOMATIS BERBASIS GPS. Jurnal Informatika Dan Teknik Elektro Terapan, 14(1). https://doi.org/10.23960/jitet.v14i1.8229

Issue

Section

Articles