IMPLEMENTASI PIPELINE ETL/ELT DAN MODEL DIMENSIONAL UNTUK ANALISIS PENJUALAN SHOPEE MENGGUNAKAN POSTGRESQL, DOCKER, DAN APACHE SUPERSET

Authors

  • Pita Hutabalian Universitas Singaperbangsa Karawang, Fakultas Ilmu Komputer, Informatika

DOI:

https://doi.org/10.23960/jitet.v13i3S1.8093

Abstract Views: 51 File Views: 43

Keywords:

Shopee; PostgreSQL; Docker; Apache Superset; ETL.

Abstract

Penelitian ini mengimplementasikan pipeline analitik terintegrasi berbasis PostgreSQL, Docker, dan Apache Superset untuk mengonversi data mentah penjualan toko kosmetik di Shopee menjadi dashboard bisnis interaktif yang diperbarui secara otomatis. Proses Extract, Transform, Load (ETL) dilakukan menggunakan Python dan SQL untuk mengolah data transaksi, produk, diskon, serta pelanggan sebelum dimuat ke dalam data warehouse PostgreSQL yang dirancang menggunakan model Star Schema. Sistem dijalankan dalam lingkungan Docker untuk menjamin konsistensi dan portabilitas antar komponen, sedangkan Apache Superset digunakan untuk menghasilkan visualisasi data secara real-time. Hasil penelitian menunjukkan bahwa sistem ini mampu mengintegrasikan data penjualan secara terpusat, mempercepat proses analisis, serta memperbarui visualisasi secara otomatis tanpa intervensi manual. Pendekatan ini menawarkan solusi yang praktis, ringan, dan efisien bagi pelaku e-commerce dalam menerapkan analitik berbasis data warehouse tanpa memerlukan infrastruktur ETL yang kompleks.

Downloads

Download data is not yet available.

References

Bahaa, A., et al. (2021). A systematic literature review for implementing DataOps in the data warehouse lifecycle during the ETL phase. Journal of Computer Science, 17(8), 1011–1030. https://doi.org/10.3844/jcssp.2021.1011.1030

H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (SVM),” Jurnal Informatika dan Teknik Elektro Terapan (JITET), vol. 12, no. 2, Apr. 2024.

Dhaouadi, A., et al. (2022). Data warehousing process modeling from classical to new paradigms. Data, 7(8), 113. https://doi.org/10.3390/data7080113

Dinesh, L., & Devi, K. G. (2024). An efficient hybrid optimization of ETL process in data warehouse of cloud architecture. Journal of Cloud Computing. https://doi.org/10.1186/s13677-023-00571-y

Ebadifard, N., et al. (2023). Data extraction, transformation, and loading process automation for algorithmic trading machine learning modelling and performance optimization. arXiv preprint arXiv:2312.12774.

Fan, X. (2024). Enterprise level data warehouse system based on Hive. Procedia Computer Science, 232, 1172–1178. https://doi.org/10.1016/j.procs.2024.03.187

Khan, M. (2022). ETL maturity model for data warehouse systems: A CMMI approach. Computer Standards & Interfaces, 81(3), 103–119. https://doi.org/10.1016/j.csi.2022.103493

Nath, R. P. D., et al. (2020). High-level ETL for semantic data warehouses. arXiv preprint arXiv:2006.07180.

Optimizing ETL processes for high-volume data in financial applications. (2023). Journal of Information Systems and Emerging Management, 13(2), 210–218.

Study on a data warehousing for e-commerce logistics. (2023). CEUR Workshop Proceedings, 3680, 1–7. Retrieved from https://ceur-ws.org/Vol-3680/S3Paper14.pdf

Theofilou, A., Gkountaras, N., & Pappa, A. (2025). Design and implementation of a scalable data warehouse for agricultural big data. Sustainability, 17(8), 3727. https://doi.org/10.3390/su17083727

The role of data warehousing in the infrastructure of e-commerce. (2022). International Journal of Applied Engineering and Management. Retrieved from https://ijaem.net/issue_dcp/The_Role_of_Data_Warehousing_In_the_Infrastructure_of_E_Commerce.pdf

Uddin, M. K. S., Rahman, M. A., & Islam, M. A. (2024). A review of implementing AI-powered data warehouse solutions to optimize big data management and utilization. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4993596

Yang, Y., Abdelhedi, F., Darmont, J., Ravat, F., & Teste, O. (2021). Internal data imputation in data warehouse dimensions. arXiv preprint arXiv:2110.01228.

BCNF – From normalized to star schemas and back again. (2023). ACM SIGMOD Proceedings, 1–12. https://doi.org/10.1145/3555041.3589712

Downloads

Published

2025-10-19

How to Cite

Hutabalian, P. (2025). IMPLEMENTASI PIPELINE ETL/ELT DAN MODEL DIMENSIONAL UNTUK ANALISIS PENJUALAN SHOPEE MENGGUNAKAN POSTGRESQL, DOCKER, DAN APACHE SUPERSET. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.8093

Issue

Section

Articles