ANALISIS KINERJA MODEL YOLOv8 UNTUK MONITORING KEPATUHAN PENGGUNAAN SEPATU SAFETY PADA PETUGAS PEMADAM KEBAKARAN
DOI:
https://doi.org/10.23960/jitet.v13i3S1.8065Abstract Views: 32 File Views: 15
Keywords:
Firefighters, Monitoring, PPE (Personal Protective Equipment), Safety Shoes, YOLOv8Abstract
Compliance with Personal Protective Equipment (PPE), such as safety shoes, is a crucial challenge in high-risk work environments, including for firefighters. Negligence in PPE usage is a leading cause of workplace accidents. This study aims to analyze the performance of the YOLOv8 object detection model in a real-time monitoring system designed to detect the use of safety shoes. The research method includes system design, image dataset collection, YOLOv8 model training, and performance evaluation using standard metrics. The performance analysis shows excellent model performance, achieving a precision of 97%, recall of 94.9%, and a mean Average Precision (mAP) of 97.5%. Furthermore, functional testing of the system resulted in a 90% user satisfaction rate. These results indicate that YOLOv8 is an effective and reliable method for automated monitoring and has great potential to minimize workplace accidents caused by negligence in PPE use.
Downloads
References
L. Y. Siregar dan I. P. Nasution, “Development of information technology on increasing business online,” Jurnal Ilmiah Manajemen dan Bisnis, vol. 2, no. 1, hlm. 71–75, 2020.
M. Alfian, H. L. Wijayanto, K. Kadriadi, dan M. Jafar, “Sistem Transmisi pada Mesin Pembersih Sepatu Safety Semi Otomatis,” Jurnal Ilmiah Universitas Batanghari Jambi, vol. 23, no. 1, hlm. 1080, Feb 2023, doi: 10.33087/jiubj.v23i1.3086.
M. Zhong dan F. Meng, “A YOLOv3-based non-helmet-use detection for seafarer safety aboard merchant ships,” J Phys Conf Ser, vol. 1325, no. 1, hlm. 012096, Okt 2019, doi: 10.1088/1742-6596/1325/1/012096.
F. L. A. Saputra, “Kecelakaan kerja makin marak dalam lima tahun terakhir,” https://www.bpjsketenagakerjaan.go.id/.
R. Rusdin dan O. B. Lobo, “PELATIHAN WELDING SMAW 1G DAN 2F PADA MASYARAKAT KELOMPOK NELAYAN GUNA MENINGKATKAN KETERAMPILAN KOMPETENSI DI KABUPATEN FAKFAK,” JMM (Jurnal Masyarakat Mandiri), vol. 8, no. 1, hlm. 797, Feb 2024, doi: 10.31764/jmm.v8i1.20376.
N. Khairunisa, Carudin, dan A. Jamaludin, “ANALISIS PERBANDINGAN ALGORITMA CNN DAN YOLO DALAM MENGIDENTIFIKASI KERUSAKAN JALAN,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Agu 2024, doi: 10.23960/jitet.v12i3.4434.
K. Man dan J. Chahl, “A Review of Synthetic Image Data and Its Use in Computer Vision,” J Imaging, vol. 8, no. 11, hlm. 310, Nov 2022, doi: 10.3390/jimaging8110310.
Y. Yanto, F. Aziz, dan I. Irmawati, “YOLO-V8 PENINGKATAN ALGORITMA UNTUK DETEKSI PEMAKAIAN MASKER WAJAH,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, hlm. 1437–1444, Okt 2023, doi: 10.36040/jati.v7i3.7047.
N. Akbar dan A. Rahman, “Pengaruh Image Size pada Penghitung Jumlah Orang Dalam Ruangan Menggunakan Metode YOLOv8,” Jurnal Algoritme, vol. 5, no. 2, hlm. 176–187, Apr 2025, doi: 10.35957/algoritme.v5i2.9035.
U. Khairani, V. Mutiawani, dan H. Ahmadian, “Pengaruh Tahapan Preprocessing Terhadap Model Indobert Dan Indobertweet Untuk Mendeteksi Emosi Pada Komentar Akun Berita Instagram,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 4, hlm. 887–894, Agu 2024, doi: 10.25126/jtiik.1148315.
T. Tukino dan A. R. Hakim, “ANALISIS SENTIMEN OBJEK WISATA DI GOOGLE MAPS MENGGUNAKAN METODE DECISION TREE,” Computer Based Information System Journal, vol. 12, no. 1, hlm. 122–130, Mar 2024, doi: 10.33884/cbis.v12i1.8456.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



