PREDIKSI PERGERAKAN HARGA SAHAM MENGGUNAKAN QUANTUM MACHINE LEARNING BERBASIS VARIATIONAL QUANTUM CIRCUITS
DOI:
https://doi.org/10.23960/jitet.v13i3S1.8038Abstract Views: 104 File Views: 93
Keywords:
quantum machine learning, variational quantum circuit, prediksi saham, bursa efek indonesiaAbstract
Pergerakan harga saham bersifat kompleks, non-linear dan dipengaruhi oleh berbagai faktor ekonomi sehingga prediksinya menjadi tantangan bagi metode tradisional. Penelitian ini bertujuan untuk memanfaatkan Quantum Machine Learning (QML) berbasis Variational Quantum Circuits (VQC) dalam memprediksi arah pergerakan harga saham di Bursa Efek Indonesia. Dataset yang digunakan merupakan data harga harian saham (open, high, low, close, volume) selama periode 2020 - 2025 yang diperoleh dari Yahoo Finance dan IDX. Metode penelitian meliputi preprocessing data, transformasi time series menggunakan sliding window, serta pelatihan model QML untuk memprediksi tren naik atau turun saham. Hasil eksperimen menunjukkan bahwa model QML mampu mencapai akurasi prediksi sebesar 99,70%. Evaluasi dilakukan menggunakan metrik akurasi, mean squared error (MSE) dan confusion matrix, menunjukkan kemampuan VQC menangkap pola non-linear yang kompleks. Penelitian ini menegaskan potensi QML sebagai teknologi inovatif untuk analisis pasar saham dan membuka peluang pengembangan sistem prediksi saham berbasis komputasi kuantum di masa depan.
Downloads
References
M. Sinurat, R. N. Ilham, W. Cahyadi, A. Syahputra, R. P. S. Hutauruk, and R. S. Zalukhu, “The Effect of Macroeconomic Factors and Profitability on State-Owned Companies’ Stock Return: Evidence from Indonesia Stock Exchange,” International Journal of Sustainable Development & Future Society, vol. 1, no. 2, pp. 73–78, Nov. 2023, doi: 10.62157/ijsdfs.v1i2.42.
A. M. Satifa, U. Zaza, R. Yohana Banoet, E. Tje, and Y. Dima, “Dampak Ketengangan Geopolitik terhadap Investasi Asing Langsung (FDI) di Indonesia,” 2025.
E. Cevik, B. Kirci Altinkeski, E. I. Cevik, and S. Dibooglu, “Investor sentiments and stock markets during the COVID-19 pandemic,” Financial Innovation, vol. 8, no. 1, p. 69, Jul. 2022, doi: 10.1186/s40854-022-00375-0.
H. P H and A. Rishad, “An empirical examination of investor sentiment and stock market volatility: evidence from India,” Financial Innovation, vol. 6, no. 1, p. 34, Dec. 2020, doi: 10.1186/s40854-020-00198-x.
S. Suhono, N. Nugraha, D. Disman, M. Sari, and P. R. A. Kristamtomo, “The effect of macroeconomic factors on the jakarta composite index in indonesia 2013-2020 period,” 2021.
J. Bao and T. Morimoto, “High-frequency stock price prediction via deep learning,” Machine Learning with Applications, vol. 21, p. 100716, Sep. 2025, doi: 10.1016/j.mlwa.2025.100716.
J. Zheng, D. Xin, Q. Cheng, M. Tian, and L. Yang, “The Random Forest Model for Analyzing and Forecasting the US Stock Market in the Context of Smart Finance,” Feb. 2024.
M. Lim and T. Handhayani, “PENERAPAN LSTM DAN GRU UNTUK PREDIKSI HARGA CABAI MERAH DI KOTA JAWA TIMUR,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 2, Apr. 2025, doi: 10.23960/jitet.v13i2.6467.
Q. Li, N. Kamaruddin, S. S. Yuhaniz, and H. A. A. Al-Jaifi, “Forecasting stock prices changes using long-short term memory neural network with symbolic genetic programming,” Sci Rep, vol. 14, no. 1, p. 422, Jan. 2024, doi: 10.1038/s41598-023-50783-0.
K. V. Thomas and K. Santhosh Kumar, “Investor Sentiment and Stock Market Volatility: A Behavioral Finance Perspective,” GS WOW: Wisdom of Worthy Research Journal, vol. 4, no. 1, pp. 37–50, 2025, doi: 10.62078/grks.2025.v04i01.005.
P. Triya, N. Suarna, and N. D. Nuris, “PENERAPAN MACHINE LEARNING DALAM MELAKUKAN PREDIKSI HARGA SAHAM PT. BANK MANDIRI (PERSERO) TBK DENGAN ALGORITMA LINEAR REGRESSION,” 2024.
L. Marchetti et al., “Quantum computing algorithms: getting closer to critical problems in computational biology,” Brief Bioinform, vol. 23, no. 6, Nov. 2022, doi: 10.1093/bib/bbac437.
G. Acampora et al., “Quantum computing and artificial intelligence: status and perspectives,” Jun. 2025.
N. Mishra et al., “Quantum Machine Learning: A Review and Current Status,” 2021, pp. 101–145. doi: 10.1007/978-981-15-5619-7_8.
V. R. Kebande, “Quantum Computing in Industrial Internet of Things ( IIoT ) Forensics: Framework, Implications, Opportunities, and Future Directions,” WIREs Forensic Science, vol. 7, no. 3, Sep. 2025, doi: 10.1002/wfs2.70013.
M. Cerezo et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, Aug. 2021, doi: 10.1038/s42254-021-00348-9.
J. Biamonte, “Universal variational quantum computation,” Phys Rev A (Coll Park), vol. 103, no. 3, p. L030401, Mar. 2021, doi: 10.1103/PhysRevA.103.L030401.
S. Deshpande, G. R. Dahale, S. N. Morapakula, and U. Wad, “Prediction of Stocks Index Price using Quantum GANs,” Sep. 2025.
B. C. Sahoo, S. K. Satapathy, S.-B. Cho, and S. Mishra, “Decoding Market Dynamics: Variational Quantum Circuit in Stock Prediction,” 2025, pp. 25–49. doi: 10.1007/978-3-031-89905-8_2.
L. Su, D. Li, and D. Qiu, “BLS-QLSTM: a novel hybrid quantum neural network for stock index forecasting,” Humanit Soc Sci Commun, vol. 12, no. 1, p. 1011, Jul. 2025, doi: 10.1057/s41599-025-05348-z.
S. S. Gill and R. Buyya, “Transforming research with quantum computing,” Journal of Economy and Technology, vol. 4, pp. 1–8, 2026, doi: 10.1016/j.ject.2024.07.001.
R. Dewi and M. Ridwan, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Analisis Metode Quantum untuk Optimalisasi Algoritma Best First Search,” 2021.
National Institute of Standards and Technology, “Quantum Computing Explained.”
M. Akrom, “KOMPARASI SVM KLASIK DAN KUANTUM DALAM KLASIFIKASI BINER BIJI GANDUM (SEEDS) COMPARISON OF CLASSICAL AND QUANTUM SVM IN BINARY CLASSIFICATION OF WHEAT SEEDS,” 2024. [Online]. Available: https://archive.ics.uci.edu/dataset/236/seeds
N. Amalina, R. Hilmy, and M. Akrom, “IMPLEMENTASI QSVM DALAM KLASIFIKASI BINER PADA KASUS KANKER PROSTAT IMPLEMENTATION OF QSVM IN BINARY CLASSIFICATION IN PROSTATE CANCER CASES,” 2024.
M. Oktoberyan Sawato Zuduhu Daeli, M. Telaumbanua, and L. Lestari Lase, “ANALISIS PENGGUNAAN FISIKA KUANTUM DALAM PENGEMBANGAN KOMPUTASI KUANTUM,” 2025.
J. C. L. Chow, “Quantum Computing and Machine Learning in Medical Decision-Making: A Comprehensive Review,” Algorithms, vol. 18, no. 3, p. 156, Mar. 2025, doi: 10.3390/a18030156.
R. Susanti and I. Komputer, “PENERAPAN QUANTUM MACHINE LEARNING DALAM PENGOPTIMALAN PORTOFOLIO KEUANGAN,” 2024.
R. Adawiyah, “EKSPLORASI KAPASITAS PENGKODEAN AMPLITUDO UNTUK MODEL QUANTUM MACHINE LEARNING,” vol. 3, no. 1, pp. 38–58, 2023, [Online]. Available: http://journal.politeknik-pratama.ac.id/index.php/JTIMpage38
S. Raubitzek and K. Mallinger, “On the Applicability of Quantum Machine Learning,” Entropy, vol. 25, no. 7, p. 992, Jun. 2023, doi: 10.3390/e25070992.
H.-H. Tseng, H.-Y. Lin, S. Y.-C. Chen, and S. Yoo, “Transfer Learning Analysis of Variational Quantum Circuits,” in 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), IEEE, Apr. 2025, pp. 1–5. doi: 10.1109/ICASSPW65056.2025.11011037.
M. Akrom, W. Herowati, and D. R. I. M. Setiadi, “A Quantum Circuit Learning-based Investigation: A Case Study in Iris Benchmark Dataset Binary Classification,” Journal of Computing Theories and Applications, vol. 2, no. 3, pp. 355–367, Jan. 2025, doi: 10.62411/jcta.11779.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



