PERAMALAN PENJUALAN DENGAN DECISION TREE UNTUK OPTIMASI KEUNTUNGAN DI GARMENT NURUL JADID

Authors

  • Anis Yusrotun Nadhiroh Anis Universitas Nurul Jadid
  • Holisah Universitas Nurul Jadid
  • Dwi Anggi Universitas Nurul Jadid
  • Usaimah Universitas Nurul Jadid

DOI:

https://doi.org/10.23960/jitet.v13i3S1.7986

Abstract Views: 46 File Views: 79

Keywords:

Peramalan Penjualan, Decision Tree, Keuntungan, Nurul Jadid Garment

Abstract

Study This aim For predict sale products at Nurul Jadid Garment for optimize profit company through implementation Decision Tree algorithm . Problems faced is fluctuations sales that cause inaccuracy in production and distribution , so that influence efficiency operational and profit . The method used in study This is approach quantitative with Decision Tree algorithm as tool analysis main . Sales data historical collected and processed For identify patterns sale based on attributes like type product , season , and sales volume . Research results show that the Decision Tree model is capable of classify and predict trend sale with level adequate accuracy . Based on results prediction said , the company can plan better production and marketing strategies appropriate target . Conclusion of study This is that use of Decision Tree as tool forecasting sale effective in help taking decision business and can increase profit through efficiency production and reduction excess stock .

Downloads

Download data is not yet available.

References

Chaesa Akmal A, Diadora S , Safira Damayanti K , Iqbal Al A , Nur Iksan .” Pendekatan Berbasis Decision Tree Dengan Pola Wildcard Untuk Mengidentifikasi Plat Nomor Kendaraan Pulau Jawa” JITET : Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 3, pp.221-228,2025doi:10.23960/jitet.v13i3.6728

Ubeitul Maltuf and Zaehol Fatah, “Penerapan Algoritma Decision Tree Untuk Klasifikasi Konsumsi Energi Listrik Rumah Tangga Dengan Penggunaan Rapidminer,” Jurnal Ilmiah Multidisiplin Ilmu, vol. 2, no. 1, pp. 38–45, Feb. 2025, doi: 10.69714/0hmk8712.

A. P. Permana, K. Ainiyah, and K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, KNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 6, no. 3, pp. 178–188, 2021.

M. F. Hidayattullah, T. Abidin, I. N. Nururrizqi, and I. Khoeriyah, “Sistem Pendukung Keputusan Latihan Memanah Menggunakan Algoritma Decision Tree,” Komputika : Jurnal Sistem Komputer, vol. 10, no. 2, pp. 93–99, Aug. 2021, doi: 10.34010/komputika.v10i2.3774.

D. A. Mukhsinin, M. Rafliansyah, S. A. Ibrahim, R. Rahmaddeni, and D. Wulandari, “Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 570–579, Mar. 2024, doi: 10.57152/malcom.v4i2.1255.

N. Azwanti and N. E. Putria, “Analisis Kepuasan Customer pada Sdtechnology Computer dengan Algoritma Decision Tree,” Jurnal Desain Dan Analisis Teknologi, vol. 3, no. 2, pp. 137–148, Jul. 2024, doi: 10.58520/jddat.v3i2.62.

Vincent Gaspersz. 2002. Production Planing and Inventory Control. PT. Gramedia Pustaka Utama: Jakarta (Mamat et al., 2019)

( Nisa , 2019). Nisa , C. (2019). Optimasi Hasil Produksi Genteng Menggunakan Goal Programming Sebagai Monograf. Pendidikan MIPA.

(Weiss, 2011) Weiss, H. J. (2011). POM QM for Windows Software for Decision Sciences. Northwestern University: Pearson Education, Inc.

Suranda, D. I. & Nugroho, A. (2024). “Klasifikasi Data Penjualan untuk Memprediksi Tingkat Penjualan Produk Menggunakan Metode Decision Tree (Studi Kasus Butik Aruna Ambarawa).” Jurnal Teknik Informasi dan Komputer (Tekinkom), 7(1), 1–10.

Arifin, N. B. & Asmianto. (2023). “Sistem Prediksi Penjualan Menggunakan Kombinasi Metode Monte Carlo dan Decision Tree Berbasis Website.” MATHunesa: Jurnal Ilmiah Matematika, 11(2), 274–286.

Susanti, Y. D., Cahyo, R. N., & Farizal, F. (2022). “Forecasting Demand of Indonesian Local Fashion Product Using Hybrid Method: K-Means Clustering and Decision Tree Algorithm.” Proceedings of the 4th Asia Pacific Conference on Research in Industrial and Systems Engineering (APCORISE 2021)

Shabrilianti, S. S., Mail, A. T., & Lantana, D. A. (2023). “Analisis Klasifikasi Perfomance KPI Salesman Menggunakan Metode Decision Tree dan Naïve Bayes.” JURIKOM (Jurnal Riset Komputer), 10(1), 50–60.

Johannes, R. & Alamsyah, A. (2021). “Sales Prediction Model Using Classification Decision Tree Approach for Small Medium Enterprise Based on Indonesian E-Commerce Data.” arXiv preprint arXiv:2103.03117.

Ainnur, D., Saragih, R., Safii, M., & Suhendro, D. (2021). Penerapan Data Mining Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi di Program Studi Sistem Informasi. In Journal of Information System Research (Vol. 2, Issue 2). https://ejurnal.seminar-id.com/index.php/josh/

Andriska, B., Permana, C., & Dewi, I. K. (2021). Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes. Jurnal Informatika Dan Teknologi, 4(1). https://doi.org/10.29408/jit.v4i1.2994

Hafizan, H., & Putri, A. N. (2020). Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun (Vol. 1, Issue 2).

Dwi, R., Magister, P., Fakultas, M., & Dan Bisnis, E. (n.d.). Pengembangan General Key Performance Indicators Untuk Peningkatan Kinerja Plato Foundation. In Arthavidya Jurnal Ilmiah Ekonomi Maret (Vol. 2021}

Downloads

Published

2025-10-19

How to Cite

Anis, A. Y. N., Nur, N. H., nafisah, N. D. A. Y., & Syafana, S. U. M. (2025). PERAMALAN PENJUALAN DENGAN DECISION TREE UNTUK OPTIMASI KEUNTUNGAN DI GARMENT NURUL JADID . Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.7986

Issue

Section

Articles