IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) PADA KLASIFIKASI GRADE JENIS SAMPAH PLASTIK DAN KALENG

Authors

  • Muhammad Fadli Setiawan Politeknik TEDC Bandung

DOI:

https://doi.org/10.23960/jitet.v13i3S1.7805

Abstract Views: 47 File Views: 23

Keywords:

Convolutional Neural Network, MobileNetV2, Image Classification, Streamlit

Abstract

Waste management is a critical issue in urban areas due to increasing volumes and diverse waste conditions. In Bandung City, plastic and can waste with intact or dented states often complicate manual sorting, which is time-consuming and error-prone. This study proposes an automatic classification solution using Convolutional Neural Network (CNN) with a MobileNetV2 transfer learning approach. The dataset was obtained from Kaggle and preprocessed through normalization and resizing before training. Experimental results achieved 84.33% accuracy, with the best performance in metal classes (precision and recall above 87%) and the lowest in dented plastic (recall 66.67%). The model was integrated into a Streamlit-based interface for real-time prediction. These findings highlight CNN’s effectiveness in supporting faster and more consistent waste classification, although further dataset expansion is needed to improve performance in specific categories.

Downloads

Download data is not yet available.

References

Kehutanan Kementerian Lingkungan Hidup dan, “Sistem Informasi Pengelolaan Sampah Nasional (SIPSN).” Accessed: Aug. 15, 2025. [Online]. Available: https://sipsn.menlhk.go.id/

Kumparan News, “Tantangan Mendaur Ulang Limbah Plastik dan Karton di Indonesia,” Kumparan. Accessed: Aug. 15, 2025. [Online]. Available: https://kumparan.com/kumparannews/tantangan-mendaur-ulang-limbah-plastik-dan-karton-di-indonesia-20aUC5zELRq

Fauzi, “Sampah-Sampah yang Sulit Terurai dan Berapa Lama Prosesnya,” TeknosID. Accessed: Aug. 15, 2025. [Online]. Available: https://www.teknosid.com/blog/sampah-sampah-yang-sulit-terurai-dan-berapa-lama-prosesnya

I. yolia dewi Widayanti, J. Maulindar, and Nurchim, “Perancangan Sistem Sampah Organik Dan Anorganik Berbasis Mikrokontroler Menggunakan Sensor Proximity,” INFOTECH J., vol. 9, no. 1, pp. 207–214, 2023.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

M. Haqqi, L. Rochmah, A. D. Safitri, R. A. Pratama, and Tarwoto, “Implementation Of Machine Learning To Identify Types Of Waste Using CNN Algorithm,” J. Fasilkom, vol. 14, no. 3, pp. 761–765, 2024.

A. R. Fahcruroji, Madona Yunita Wijaya, and Irma Fauziah, “Implementasi Algoritma Cnn Mobilenet Untuk Klasifikasi Gambar Sampah Di Bank Sampah,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 11, no. 1, pp. 45–51, 2024.

E. Sutanty and D. Kusuma Astuti, “DECODE: Jurnal Pendidikan Teknologi Informasi PENERAPAN MODEL ARSITEKTUR VGG16 UNTUK KLASIFIKASI JENIS SAMPAH,” vol. 3, no. 2, pp. 407–419, 2023.

Republik Indonesia, Undang-Undang Nomor 18 Tahun 2008 tentang Pengelolaan Sampah. Indonesia: Undang-Undang Republik Indonesia Nomor 18 Tahun 2008 tentang Pengelolaan Sampah, 2008.

A. Ibnul Rasidi, Y. A. H. Pasaribu, A. Ziqri, and F. D. Adhinata, “Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 142–149, 2022.

A. Taufiq and M. F. Maulana, “Sosialisasi Sampah Organik dan Non Organik Serta Pelatihan Kreasi Sampah,” J. Inov. dan Kewirausahaan, vol. 4, no. 1, pp. 68–73, 2015.

R. Budi Setianingrum, “Pengelolaan Sampah Dengan Pola 3 R Untuk Memperoleh Manfaat Ekonomi Bagi Masyarakat,” BERDIKARI J. Inov. dan Penerapan Ipteks, vol. 6, no. 2, pp. 173–183, 2018.

K. Zhao, Y. Cui, Z. Liu, and S. Lian, “A Waste Copper Granules Rating System Based on Machine Vision,” pp. 1–9.

W. Xu, P. Xiao, L. Zhu, Y. Zhang, and J. Chang, “Engineering Applications of Artificial Intelligence Classification and rating of steel scrap using deep learning,” Eng. Appl. Artif. Intell., vol. 123, no. January, p. 106241.

Anhar and R. A. Putra, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network ( CNN ),” vol. 11, no. 2, pp. 466–478, 2023.

D. R. R. Putra, R. A. Saputra, and M. A. Asyrofi, “Implementasi Convolutional Neural Network (Cnn) Untuk Mendeteksi Penggunaan Masker Pada Gambar,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 710–714, 2023.

A. Prayoga, P. Sukmasetya, M. Resa, A. Yudianto, and R. A. Hasani, “JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY ( JACOST ) Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta,” vol. 4, no. 2, pp. 82–89, 2023.

G. R. Baihaqi et al., “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK UNTUK CONV OLUTIONAL NEURAL NETWORK IMPLEMENTATION FOR COLON,” vol. 12, no. 2, pp. 411–416, 2025.

M. Sandler, M. Zhu, A. Zhmoginov, and C. V Mar, “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.

S. Saalim, R. Atmadja, A. H. Rismayana, P. Studi, and T. Informatika, “Klasifikasi Brand Sepatu Nike Berbasis Citra Dengan Algoritma Convolution Neural Network ( Cnn ),” vol. 25, pp. 67–74, 2025.

Streamlit, “Streamlit: A faster way to build and share data apps.” Accessed: Aug. 15, 2025. [Online]. Available: https://streamlit.io/

A. Tholib, Implementasi Machine Learning berbasis Web dengan Framework Streamli. Probolinggo: PustakaNurja, 2023.

Downloads

Published

2025-10-19

How to Cite

Fadli Setiawan, M. (2025). IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) PADA KLASIFIKASI GRADE JENIS SAMPAH PLASTIK DAN KALENG. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.7805

Issue

Section

Articles