ANALISIS SENTIMEN ULASAN APLIKASI SIREKAP MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE

Authors

  • Abidin Abidin Universitas Islam Majapahit

DOI:

https://doi.org/10.23960/jitet.v13i3S1.7768

Abstract Views: 32 File Views: 21

Keywords:

Analisis Sentimen, SIREKAP, Google Play Store, Support Vector Machine, Pemilu.

Abstract

SIREKAP is the official application of the General Election Commission (KPU) used for digital vote tabulation in the 2024 elections. Since its release on the Google Play Store, the application has received various responses from users, ranging from praise to complaints. This study aims to analyze user sentiment toward the SIREKAP application by applying the Support Vector Machine (SVM) algorithm. The data analyzed consists of 15,000 Indonesian-language reviews obtained through web scraping techniques. The research process includes text preprocessing (cleaning, tokenizing, and stemming), sentiment labeling into positive, negative, and neutral categories, and training the SVM model with a linear kernel. Model performance evaluation was conducted using a confusion matrix based on accuracy, precision, and recall metrics. The results showed that the SVM model was able to classify sentiment with high accuracy, reaching 99%. This study provides an overview of public perception of the SIREKAP application and can serve as evaluation material for developers and election organizers in the future.

Downloads

Download data is not yet available.

References

Akhsan Firly Saetriyan, Intan Syahrani, Melisa Nurdiana, Muhamad Rizal Fauzan, Novira Putri Rustandi, and Salwa Yurisha, “Analisis Yuridis Tentang Sengketa Pemilu Terhadap Pelaksanaan Sistem Informasi Rekapitulasi (SIREKAP) Yang Terindikasi ‘Defect’ Pada Pemilu Tahun 2024 Yang Berpotensi Merugikan Bakal Calon Presiden,” Demokr. J. Ris. Ilmu Hukum, Sos. dan Polit., vol. 1, no. 3, pp. 224–240, 2024, doi: 10.62383/demokrasi.v1i3.283.

N. Inzana, A. A. Maulana, and P. M. Sari, “Inovasi Sirekap dalam Meningkatkan Partisipasi Politik,” J. Adm. Pemerintah. Desa, vol. 5, no. 2, pp. 1–13, 2024, doi: 10.47134/villages.v5i2.106.

M. Rizky Hanafi and R. Kurniawan, “Sentiment Analysis on Sirekap App Reviews on Google Play Using Naive Bayes Algorithm,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. October, pp. 1578–1586, 2024.

F. Rahmasari, N. Rahaningsih, R. D. Dana, and C. L. Rohmat, “Optimasi Analisis Sentimen Aplikasi Glints Menggunakan Algoritma Support Vector Machine (Svm),” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 1, 2025, doi: 10.23960/jitet.v13i1.5681.

İ. Tarımer, A. Çoban, and A. E. Kocaman, “Sentiment Analysis on IMDB Movie Comments and Twitter Data by Machine Learning and Vector Space Techniques,” pp. 1–8, 2019, [Online]. Available: http://arxiv.org/abs/1903.11983

G. R. Ditami, E. F. Ripanti, and H. Sujaini, “Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace,” J. Edukasi dan Penelit. Inform., vol. 8, no. 3, p. 508, 2022, doi: 10.26418/jp.v8i3.56478.

R. W. Pratiwi, S. F. H, D. Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 1, pp. 40–46, 2021, doi: 10.20895/inista.v4i1.387.

R. Septian, S. Irianto, and A. Andriani, “Matematika Berbasis Model Realistic Mathematics,” J. Educ. FKIP UNMA, vol. 5, no. 1, pp. 59–67, 2019.

H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.

M. R. Manoppo, I. C. Kolang, D. N. Fiat, R. Michelly, and C. Mawara, “Analisis Sentimen Publik Di Media Sosial Terhadap Kenaikan Ppn 12 % Di Indonesia Menggunakan Indobert Analysis of Public Sentiment on Social Media Towards the 12 % Ppn Increase in Indonesia Using Indobert,” vol. 4, no. 2, pp. 152–163, 2025, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/76873

M. Alfin, Z. Abidin, and P. M. N. S. A. Basid, “Peringkasan Multi Dokumen Berbahasa Indonesia Menggunakan Metode Recurrent Neural Network,” Techno.Com, vol. 23, no. 1, pp. 187–197, 2024, doi: 10.62411/tc.v23i1.9605.

A. R. Lubis and M. K. M. Nasution, “Twitter Data Analysis and Text Normalization in Collecting Standard Word,” J. Appl. Eng. Technol. Sci., vol. 4, no. 2, pp. 855–863, 2023, doi: 10.37385/jaets.v4i2.1991.

M. S. F. Fayaza and F. F. Farhath, “Towards Stopwords Identification in Tamil Text Clustering,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 12, pp. 524–529, 2021, doi: 10.14569/IJACSA.2021.0121267.

R. I. Agustin, “Komparasi Algoritma Naïve Bayes Dan Svm Untuk Analisis Sentimen Twitter Korupsi Bansos Beras Masa Pandemi,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 912–918, 2024, doi: 10.23960/jitet.v12i2.4020.

E. E. Pratiwi, A. R. Aisy, R. Rahmaddeni, and N. Ananta, “Klasifikasi Kesehatan Mental Pada Usia Remaja Menggunakan Metode Svm,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 2, 2025, doi: 10.23960/jitet.v13i2.6232.

Downloads

Published

2025-10-19

How to Cite

Abidin, A. (2025). ANALISIS SENTIMEN ULASAN APLIKASI SIREKAP MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.7768

Issue

Section

Articles