DETEKSI DAN PRIORITAS MITIGASI MALWARE MENGGUNAKAN RANDOM FOREST DAN METODE MCDM

Authors

  • Nadiya Herdiana Putri St Ilmu Komputer Cipta Karya Informatika

DOI:

https://doi.org/10.23960/jitet.v13i3S1.7762

Abstract Views: 49 File Views: 29

Keywords:

Malware, MCDM, Random Forest, TOPSIS

Abstract

Given the rise of increasingly sophisticated malware, it is important to develop accurate and fast detection systems to minimize the losses incurred. This study adopts a hybrid approach by integrating the Random Forest algorithm for malware classification and the TOPSIS method for prioritizing malware handling based on risk factors and business impact. The dataset used is from CIC-MalMem-2022 and processed using statistical features such as entropy, number of API calls, and file size. The Random Forest model was optimized using Grid Search, with the best results at parameters n_estimators = 100 and max_depth = 10, reaching a detection accuracy of 95.87% after hyperparameter tuning. Subsequently, the decision-making process was conducted using the TOPSIS method to rank malware based on predefined criteria weights. Evaluation results show that this system achieves a success rate with a prioritization accuracy of 0.84 and detection and response times under 30 minutes, thereby supporting more effective cybersecurity needs. Thus, this approach has proven capable of significantly improving malware detection accuracy and accelerating the mitigation process.

Downloads

Download data is not yet available.

References

Verizon, “DBIR Data Breach Investigations Report,” May 2022.

S. Adam, “The State of Ransomware 2024,” Apr. 2024.

M. Kida and O. Olukoya, “Nation-State Threat Actor Attribution Using Fuzzy Hashing,” IEEE Access, vol. 11, pp. 1148–1165, Dec. 2022, doi: 10.1109/ACCESS.2022.3233403.

B. M. Khammas, “Ransomware Detection using Random Forest Technique,” ICT Express, vol. 6, no. 4, pp. 325–331, Dec. 2020, doi: 10.1016/j.icte.2020.11.001.

N. H. Alfajr, G. Garno, and D. Yusup, “Studi Komparasi Algoritma Random Forest Classifier Dan Support Vector Machine Dalam Prediksi Penyakit Jantung,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 3, Jul. 2025, doi: 10.23960/jitet.v13i3.6569.

M. S. Hossain et al., “Android Ransomware Detection from Traffic Analysis Using Metaheuristic Feature Selection,” IEEE Access, vol. 10, pp. 128754–128763, Dec. 2022, doi: 10.1109/ACCESS.2022.3227579.

G. M. S. Hossain, K. Deb, H. Janicke, and I. H. Sarker, “PDF Malware Detection: Toward Machine Learning Modeling With Explainability Analysis,” IEEE Access, vol. 12, pp. 13833–13859, Jan. 2024, doi: 10.1109/ACCESS.2024.3357620.

N. Sharma and B. Arora, “Data Mining and Machine Learning Techniques for Malware Detection,” in Rising Threats in Expert Application and Solutions, V. S. Rathore, V. Piuri, Z. Polkowski, N. Dey, R. Babo, and J. M. R. S. Tavares, Eds., Jaipur: Springer, Jan. 2020, pp. 557–567. doi: doi.org/10.1007/978-981-15-6014-9_66.

D. Cevallos-Salas, F. Grijalva, J. Estrada-Jiménez, D. Benítez, and R. Andrade, “Obfuscated Privacy Malware Classifiers Based on Memory Dumping Analysis,” IEEE Access, vol. 12, pp. 17481–17498, Jan. 2024, doi: 10.1109/ACCESS.2024.3358840.

S. Nethala, P. Chopra, K. Kamaluddin, S. Alam, S. Alharbi, and M. Alsaffar, “A Deep Learning-Based Ensemble Framework for Robust Android Malware Detection,” IEEE Access, vol. 13, pp. 46673–46696, Mar. 2025, doi: 10.1109/ACCESS.2025.3551152.

F. A. Khan et al., “Balanced Multi-Class Network Intrusion Detection Using Machine Learning,” IEEE Access, vol. 12, pp. 178222–178236, Nov. 2024, doi: 10.1109/ACCESS.2024.3503497.

M. Selvia Lauryn, M. Ibrohim, and A. Fasambi, “Penerapan Metode Topsis Dalam Penentuan Penerima Dana Bantuan Masyarakat Usaha Mikro Kecil Menengah,” 2023.

P. Trivedi, J. Shah, R. Cep, L. Abualigah, and K. Kalita, “A Hybrid Best-Worst Method (BWM) - Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Approach for Prioritizing Road Safety Improvements,” IEEE Access, vol. 12, pp. 30054–30065, Feb. 2024, doi: 10.1109/ACCESS.2024.3368395.

L. Ning, Y. Ali, H. Ke, S. Nazir, and Z. Huanli, “A Hybrid MCDM Approach of Selecting Lightweight Cryptographic Cipher Based on ISO and NIST Lightweight Cryptography Security Requirements for Internet of Health Things,” IEEE Access, vol. 8, pp. 220165–220187, Nov. 2020, doi: 10.1109/ACCESS.2020.3041327.

G. Ali, H. N. Musbah, H. H. Aly, and T. Little, “Hybrid Renewable Energy Resources Selection Based on Multi Criteria Decision Methods for Optimal Performance,” IEEE Access, vol. 11, pp. 26773–26784, 2023, doi: 10.1109/ACCESS.2023.3254532.

Downloads

Published

2025-10-19

How to Cite

Herdiana Putri, N. (2025). DETEKSI DAN PRIORITAS MITIGASI MALWARE MENGGUNAKAN RANDOM FOREST DAN METODE MCDM. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.7762

Issue

Section

Articles