PEMODELAN DAN SIMULASI SISTEM KENDALI ROTARY INVERTED PENDULUM BERBASIS MIKROKONTROLER STM32

Authors

  • Rafidal Muhammad Universitas Tanjungpura
  • Ferry Hadary
  • Bomo Wibowo Sanjaya

DOI:

https://doi.org/10.23960/jitet.v13i3S1.7745

Abstract Views: 56 File Views: 29

Keywords:

Rotary Inverted Pendulum, STM32, LQR, Simulasi, Sistem Kendali

Abstract

Rotary Inverted Pendulum (RIP) merupakan sistem dinamis yang bersifat tidak stabil, nonlinear, dan underactuated, sehingga sering digunakan sebagai studi kasus dalam penelitian sistem kendali. Penelitian ini membahas implementasi Linear Quadratic Regulator (LQR) untuk stabilisasi RIP berbasis mikrokontroler STM32, tanpa mencakup proses swing-up. Model linear diperoleh dari hasil linearisasi persamaan gerak di sekitar titik keseimbangan tegak menggunakan metode Lagrange. Parameter sistem diukur langsung dari perangkat fisik untuk meningkatkan akurasi model. Matriks state-feedback gain LQR dihitung menggunakan perangkat lunak MATLAB dan diimplementasikan secara real-time pada STM32F411CEU6. Pengujian dilakukan dengan memposisikan pendulum dekat titik keseimbangan dan mengamati respon sudut lengan serta sudut pendulum. Hasil pengujian menunjukkan bahwa pengendali LQR mampu menstabilkan pendulum dalam waktu kurang dari 2 detik dengan overshoot minimal, dan respon yang dihasilkan sesuai dengan hasil simulasi. Perbedaan kecil pada fase transien disebabkan oleh gesekan tak terukur, keterbatasan aktuator, dan ketidakakuratan sensor. Implementasi mengaplikasikan sistem kendali LQR secara efektif pada sistem RIP skala laboratorium dengan biaya rendah dan performa yang andal.

Downloads

Download data is not yet available.

References

Z. Ben Hazem and Z. Bingul, “Comprehensive Review of Different Pendulum Structures in Engineering Applications,” IEEE Access, vol. 11, pp. 42862–42880, 2023, doi: 10.1109/ACCESS.2023.3269580.

T. V. A. Nguyen, M. S. Phan, and Q. T. Dao, “Integrating Disturbance Handling into Control Strategies for Swing-up and Stabilization of Rotary Inverted Pendulum,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 19, no. 1, pp. 7–16, Mar. 2025, doi: 10.14313/jamris-2025-002.

Z. Shakor Mahmood, I. Burhan Kadhim, and A. Najdet Nasret, “Design of rotary inverted pendulum swinging-up and stabilizing,” Periodicals of Engineering and Natural Sciences Methodology/Method, vol. 9, no. 4, pp. 913–920, 2021.

L. Thl et al., “CASCADE PID-LQR CONTROL STRATEGY FOR NONLINEAR FLEXIBLE INVERTED PENDULUM SYSTEM,” Robotica & Management, Feb. 2024.

E. Shala, X. Bajrami, R. Likaj, and A. Pajaziti, “Real Time Swinging and Stabilizing a Double Inverted Pendulum Using PID-LQR,” Strojnicky Casopis, vol. 73, no. 1, pp. 159–168, May 2023, doi: 10.2478/scjme-2023-0013.

M. S. Aslam and Y. Zhao, “LQR-Based PID Controller with Variable Load Tuned with Data-Driven Methods for Double Inverted Pendulum.,” Soft comput, pp. 353–338, Oct. 2022, doi: 10.21203/rs.3.rs-2116770/v1.

D. Dat Tran, B. H. Nguyen, B. Q. Mai, and D.-A.-Q. Nguyen, “PSO-OPTIMIZED LQR AND ENERGY-BASED SWING-UP CONTROL FOR REACTION WHEEL INVERTED PENDULUM,” Robotica & Management, vol. 29, Feb. 2024.

D.-B. Pham, Q.-T. Dao, and T.-V.-A. Nguyen, “Effective Control Strategies for Rotary Inverted Pendulum System: Energy-Based, Linear Quadratic Regulator, and Hierarchical Sliding Mode Control Techniques,” JST: Smart Systems and Devices, vol. 33, no. 3, pp. 65–73, Sep. 2023, doi: 10.51316/jst.168.ssad.2023.33.3.9.

A. Nagarajan and A. A. Victoire, “Optimization Reinforced PID-Sliding Mode Controller for Rotary Inverted Pendulum,” IEEE Access, vol. 11, pp. 24420–24430, 2023, doi: 10.1109/ACCESS.2023.3254591.

S. Israilov et al., “Reinforcement learning approach to control an inverted pendulum: A general framework for educational purposes,” PLoS One, vol. 18, no. 2 February, Feb. 2023, doi: 10.1371/journal.pone.0280071.

S. Mahamud, “Embedded Control of a Rotary Inverted Pendulum,” Aalto University, 2024.

N. Cherrat, H. Boubertakh, H. Arioui, and R. Fellag, “Experimental Study of Swing-Up PD and Sliding Mode Control for Rotary Inverted Pendulum,” in ICAEE 2024 - International Conference on Advanced Electrical Engineering 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/ICAEE61760.2024.10783221.

R. Hernandez, R. Garcia-Hernandez, and F. Jurado, “Modeling, Simulation, and Control of a Rotary Inverted Pendulum: A Reinforcement Learning-Based Control Approach,” Modelling, vol. 5, no. 4, pp. 1824–1852, Dec. 2024, doi: 10.3390/modelling5040095.

D. B. Kim, N. P. Nguyen, and J. Moon, “Neural-Network based Swing-up and Stabilization Control of Rotary Inverted Pendulum Systems,” in IFAC-PapersOnLine, Elsevier B.V., Jul. 2023, pp. 10953–10958. doi: 10.1016/j.ifacol.2023.10.788.

M. F. Hamza, J. K. Adamu, and A. I. Isa, “Euler-Lagrange Based Dynamic Model of Double Rotary Inverted Pendulum,” 2021, pp. 419–434. doi: 10.1007/978-981-15-5281-6_29.

Downloads

Published

2025-10-19

How to Cite

Muhammad, R., Hadary, F., & Wibowo Sanjaya, B. (2025). PEMODELAN DAN SIMULASI SISTEM KENDALI ROTARY INVERTED PENDULUM BERBASIS MIKROKONTROLER STM32. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.7745

Issue

Section

Articles