PERBANDINGAN MODEL ENSEMBLE LEARNING DALAM MEMPREDIKSI HARGA SEWA INDEKOS DI JAKARTA
DOI:
https://doi.org/10.23960/jitet.v13i3S1.7737Abstract Views: 35 File Views: 29
Keywords:
XGBoost, feature importance, harga sewa kos, prediksi hargaAbstract
Ketersediaan kamar kos di Jakarta semakin dibutuhkan seiring dengan tingginya laju urbanisasi. Namun, lonjakan harga sewa menciptakan kebutuhan untuk memahami faktor-faktor yang mempengaruhinya secara akurat. Penelitian ini membandingkan empat model ensemble learning, yaitu XGBoost, CatBoost, Random Forest, dan LightGBM dalam memprediksi harga sewa kos berdasarkan data dari situs Mamikos. Data dikumpulkan melalui web scraping dan dilakukan pra-pemrosesan untuk menghapus nilai hilang, pencilan, dan mengubah variabel kategorikal menjadi numerik. Evaluasi model menggunakan metrik MAE, MSE, dan R², dengan hyperparameter tuning melalui Optuna. Hasil menunjukkan bahwa XGBoost memiliki performa terbaik dengan R² sebesar 0,6333. Analisis feature importance menunjukkan bahwa fasilitas seperti AC, kloset duduk, dan kamar mandi dalam memiliki pengaruh tertinggi terhadap harga sewa kos, lebih besar dibandingkan lokasi. Temuan ini mengindikasikan bahwa fasilitas kamar menjadi faktor utama dalam penentuan harga. Untuk peningkatan model di masa depan, disarankan penambahan fitur relevan dan penerapan feature engineering lanjutan.
Downloads
References
N. I. Imansari, “Praktikum Mengenai Kebutuhan Atau Utilitas Dalam Khidupan Sehari-hari,” J. Masharif al-Syariah J. Ekon. Perbank. Syariah, vol. 5, no. 2, p. 90, 2020.
J. Wibowati, “Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pelanggan Pada Pt Muarakati Baru Satu Palembang,” J. Manaj., vol. 8, no. 2, pp. 15–31, 2021, doi: 10.36546/jm.v8i2.348.
M. Kharisma and I. F. Susilowati, “Tinjauan Yuridis Terhadap Pengaturan Pemanfaatan Rumah Negara Selain Sebagai Tempat Tinggal Di Indonesia,” NOVUM J. Huk., vol. 7, no. 3, pp. 12–26, 2020.
M. Adam, A. Yassin, M. Adam, A. L. Yassin, S. R. I. H. Wahyuningrum, and S. W. Firmandhani, “Logo TA , DAFT , UNDIP APARTEMEN SEWA UNTUK MAHASISWA DENGAN PENDEKATAN ARSITEKTUR KONTEMPORER,” vol. 04, no. 1, p. 1988, 1988.
I. Fawzia and D. N. Andini, “Tipologi Pola Ruang Rumah Kost Mahasiswa Di Banjarbaru,” J. Rivet, vol. 2, no. 01, pp. 62–68, 2022, doi: 10.47233/rivet.v2i01.543.
Badan Pusat Statistik, Urban Village Potential Statistics of DKI Jakarta Province 2024, Jakarta, 2024. [Online]. Available: https://jakarta.bps.go.id.
Knight Frank, Jakarta Rental Apartment Market Overview H2-2023, 2024. [Online]. https://content.knightfrank.com/research/2847/
F. Risar, “Harga Kos di Jakarta Setara Cicilan Rumah? Ini 4 Alasannya,” IDN Times, Mei 2025. [Online]. https://www.idntimes.com/
Google Play, “Mamikos – Cari & Sewa Kos Mudah,” Google Play Store, 2025. [Online]. Available: https://play.google.com/store/apps/details?id=com.git.mami.kos
Jobstreet, “Company Profile: Mamikos.com,” Jobstreet Indonesia, 2025. [Online]. https://id.jobstreet.com/companies/mamikos-168557133083389
R. Tanamal, N. Minoque, T. Wiradinata, Y. Soekamto, and T. Ratih, “House Price Prediction Model Using Random Forest in Surabaya City,” TEM J., vol. 12, no. 1, pp. 126–132, 2023, doi: 10.18421/TEM121-17.
M. Maia, A. R. Azevedo, and A. Ara, “Predictive Comparison Between Random Machines and Random Forests,” J. Data Sci., vol. 19, no. 4, pp. 593–614, 2021, doi: 10.6339/21-JDS1025.
S. F. Al Maula, N. A. D. Setiawan, E. Pusporani, and S. Z. Jannah, “Modeling House Selling Prices in Jakarta and South Tangerang Using Machine Learning Prediction Analysis,” Barekeng, vol. 19, no. 1, pp. 107–118, 2025, doi: 10.30598/barekengvol19iss1pp107-118.
I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects,” IEEE Access, vol. 10, no. August, pp. 99129–99149, 2022, doi: 10.1109/ACCESS.2022.3207287.
O. Pastukh and V. Khomyshyn, “Using ensemble methods of machine learning to predict real estate prices,” CEUR Workshop Proc., vol. 3896, pp. 438–447, 2024.
Y. Zhao, R. Ravi, S. Shi, Z. Wang, E. Y. Lam, and J. Zhao, “PATE: Property, Amenities, Traffic and Emotions Coming Together for Real Estate Price Prediction,” Proc. - 2022 IEEE 9th Int. Conf. Data Sci. Adv. Anal. DSAA 2022, 2022, doi: 10.1109/DSAA54385.2022.10032416.
A. G. Karegowda and M. A. Jayaram, “Ensemble Learning in Machine Learning: Concepts, Algorithms, and Applications,” Applied Sciences, vol. 13, no. 4, p. 2147, 2023, doi: 10.3390/app13042147.
N. H. Alfajr and S. Defiyanti, “Prediksi Penyakit Jantung Menggunakan Metode Random Forest dan Penerapan Principal Component Analysis (PCA),” JITET, vol. 12, no. 3S1, pp. 3457–3464, Oct. 2024, doi: 10.23960/jitet.v12i3S1.5055.
T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.
G. Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,” in Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017.
L. Prokhorenkova, G. Gusev, A. Vorobev, A. Dorogush, and A. Gulin, “CatBoost: unbiased boosting with categorical features,” in Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018.
N. R. Mohede, B. Rahmat, and K. Kartini, “Prediction of Boarding House Rental Prices Using Multiple Linear Regression Method,” Int. J. Educ. Inf. Technol. Others, vol. 7, no. 3, pp. 191–199, 2024.
C. S. Kulkarni, “Advancing Gradient Boosting: A Comprehensive Evaluation of the CatBoost Algorithm for Predictive Modeling,” J. Artif. Intell. Mach. Learn. Data Sci., vol. 1, no. 5, pp. 54–57, 2022, doi: 10.51219/jaimld/chinmay-shripad-kulkarni/29.
M. N. Hibatulloh, G. D. Prakoso, A. D. Putri Yunus, and T. D. Putra, “Prediksi Harga Rumah di Bandung 2024 Menggunakan Ensemble Learning: Analisis Komparatif dan Interpretabilitas,” J. Inform. J. Pengemb. IT, vol. 10, no. 2, pp. 484–493, 2025, doi: 10.30591/jpit.v10i2.8200.
T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation Hyperparameter Optimization Framework,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 2623–2631, 2019, doi: 10.1145/3292500.3330701.
A. Kaya, “Conflicted Principals, Uncertain Agency: The International Monetary Fund and the Great Recession,” Glob. Policy, vol. 3, no. 1, pp. 24–34, 2012, doi: 10.1111/j.1758-5899.2011.00096.x.
Z. Jin, J. Shang, Q. Zhu, C. Ling, W. Xie, and B. Qiang, “RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12343 LNCS, pp. 503–515, 2020, doi: 10.1007/978-3-030-62008-0_35.
A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: gradient boosting with categorical features support,” pp. 1–7, 2018, [Online]. Available: http://arxiv.org/abs/1810.11363
P. Liudmila, G. Gleb, V. Aleksandr, D. Anna Veronika, and G. Andrey, “Catboost: unbiased boosting with categorical features,” Adv. Neural Inf. Process. Syst., no. Section 4, pp. 6638–6648, 2018.
M. R. Machado, S. Karray, and I. T. De Sousa, “LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry,” 14th Int. Conf. Comput. Sci. Educ. ICCSE 2019, no. Nips, pp. 1111–1116, 2019, doi: 10.1109/ICCSE.2019.8845529.
C. Molnar, *Interpretable Machine Learning*, “5.5 Feature Importance,” [Online]. Available: https://christophm.github.io/interpretable-ml-book/feature-importance.html. [Accessed: Jul. 13, 2025].
R. Szczepanek, “Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM and CatBoost,” Hydrology, vol. 9, no. 12, 2022, doi: 10.3390/hydrology9120226.
Dhiwa Aqsha, “Perbandingan Kinerja Algoritma Extreme Gradient Boosting Dan Random Forest Untuk Prediksi Harga Rumah Di Jabodetabek,” J. Ilmu Komput. dan Sist. Inf., vol. 13, no. 1, pp. 1–7, 2025, doi: 10.24912/jiksi.v13i1.32863.
J. M. Ahn, J. Kim, and K. Kim, “Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting,” Toxins (Basel)., vol. 15, no. 10, 2023, doi: 10.3390/toxins15100608.
F. Ardiansyah, “SISTEM PREDIKSI HARGA SEWA KOST DENGAN MENGGUNAKAN RANDOM FOREST ANALYTICS ( Studi Kasus : Kost Eksklusif di Daerah Istimewa Yogyakarta ) TUGAS AKHIR,” Tugas Akhir, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



