DIABETES VIRTUAL ASSISTANT “DIVISTANT”: ASISTEN DIGITAL BERBASIS CHATBOT UNTUK HIDUP LEBIH BAIK DENGAN DIABETES
DOI:
https://doi.org/10.23960/jitet.v13i3S1.7712Abstract Views: 30 File Views: 17
Keywords:
diabetes, chatbot, virtual assistant, asisten digital, usability testingAbstract
Abstrak. Diabetes melitus merupakan salah satu masalah kesehatan utama secara global, dengan diabetes melitus (DM) sebagai salah satu subtipenya yang signifikan. Deteksi dini memegang peran krusial dalam mengurangi risiko kesehatan yang terkait dengan DM, di mana algoritma klasifikasi dapat dimanfaatkan untuk mendukung diagnosis tepat waktu. Peningkatan kadar glukosa darah merupakan indikator utama diabetes, sehingga intervensi dini yang tepat sangat diperlukan untuk mencegah komplikasi. Penelitian ini menyajikan pengembangan Diabetes Virtual Assistant (DIVISTANT), sebuah asisten digital berbasis chatbot yang dirancang untuk membantu penderita diabetes dalam memantau kondisi kesehatan, memberikan materi edukasi, serta mengingatkan jadwal perawatan. Evaluasi dilakukan secara komprehensif melalui Web Testing, Mobile Testing, Performance Testing, dan User Acceptability Testing (UAT) guna memastikan keandalan fungsional, desain yang berpusat pada pengguna, serta performa sistem yang optimal. Metode pengujian yang digunakan meliputi Selenium, Unit Testing, Integration Testing, dan GTMetrix untuk menilai fungsionalitas, kegunaan, dan efisiensi kinerja aplikasi. Hasil penelitian menunjukkan bahwa DIVISTANT mampu memfasilitasi pemantauan pola makan penderita diabetes secara mandiri dan akurat. Aplikasi ini memperoleh skor System Usability Scale (SUS) sebesar 78,166 yang dikategorikan sebagai usability rata-rata, sehingga memiliki potensi praktis untuk diadopsi secara lebih luas dalam manajemen mandiri penderita diabetes.
Abstract. Diabetes mellitus is a major global health concern, with diabetes mellitus (DM) being one of its significant subtypes. Early detection plays a crucial role in reducing the health risks associated with DM, where classification algorithms can be utilized to support timely diagnosis. Elevated blood glucose levels are the primary indicator of diabetes, making appropriate early intervention essential to prevent complications.This study presents the development of the Diabetes Virtual Assistant (DIVISTANT), a chatbot-based digital assistant designed to assist individuals with diabetes in monitoring their health status, providing educational materials, and reminding them of treatment schedules. A comprehensive evaluation was carried out through Web Testing, Mobile Testing, Performance Testing, and User Acceptability Testing (UAT) to ensure functional reliability, user-centered design, and optimal system performance.Testing methodologies included Selenium, Unit Testing, Integration Testing, and GTMetrix to assess the application's functionality, usability, and performance efficiency. The results indicate that DIVISTANT facilitates independent and accurate dietary monitoring for diabetes patients. The application achieved a System Usability Scale (SUS) score of 78.166 categorized as average usability, indicating its practical potential for broader adoption in diabetes self-management.
Downloads
References
“Epidemiology of diabetes,” Wikipedia, 2025. [Daring]. Tersedia: https://en.wikipedia.org/wiki/Epidemiology_of_diabetes
A. Godfrey, “Behavior Is a Miracle Drug,” Time, 2024. [Daring]. Tersedia: https://time.com/6309926/behavior-is-a-miracle-drug-health/
“Diabetes di Indonesia,” Ekafarm, 2024. [Daring]. Tersedia: https://www.ekafarm.com/diabetes-di-indonesia/
“Waspada Diabetes: Tantangan Kesehatan Serius di Indonesia dan Asia Tenggara,” Dinas Kesehatan Kabupaten Kapuas, 2024. [Daring]. Tersedia: https://dinkes.kapuaskab.go.id/web/waspada-diabetes-tantangan-kesehatan-serius-di-indonesia-dan-asia-tenggara/
International Diabetes Federation (IDF). (2021). Indonesia - Member of the Western Pacific Region. International Diabetes Federation. [Daring] Tersedia: https://idf.org/our-network/regions-and-members/western-pacific/members/indonesia/
Databoks Katadata. (2023). Prevalensi Diabetes Indonesia Naik Jadi 11,7% pada 2023. Katadata. [Daring]. Tersedia: https://databoks.katadata.co.id/layanan-konsumen-kesehatan/statistik/8a95a31a9cb29b4/prevalensi-diabetes-indonesia-naik-jadi-117-pada-2023
VOA Indonesia. (2024). Jumlah Penderita Diabetes di Indonesia Terus Meningkat. VOA Indonesia. [Daring]. Tersedia: https://www.voaindonesia.com/a/jumlah-penderita-diabetes-di-indonesia-terus-meningkat/7870777.html
“Diabetes self-management,” Wikipedia, 2025. [Daring]. Tersedia: https://en.wikipedia.org/wiki/Diabetes_self-management
“Digital health interventions,” Wikipedia, 2025. [Daring]. Tersedia: https://en.wikipedia.org/wiki/Digital_health_interventions
A. Isakadze et al., “Conversational agents for diabetes self-management: a systematic review,” PubMed, 2024. [Daring]. Tersedia: https://pubmed.ncbi.nlm.nih.gov/39626235
J. C. P. Tsai et al., “Conversational agents for chronic disease management: A systematic review and meta-analysis,” PMC, 2024. [Daring]. Tersedia: https://pmc.ncbi.nlm.nih.gov/articles/PMC12011281/
World Health Organization, “Diabetes,” WHO Fact Sheets, 2023. [Daring]. Tersedia: https://www.who.int/news-room/fact-sheets/detail/diabetes
American Diabetes Association, “Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2024,” Diabetes Care, vol. 47, no. Supplement_1, pp. S13–S31, 2024. [Daring]. Tersedia: https://doi.org/10.2337/dc24-S002
R. Hoy, “Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants,” Medical Reference Services Quarterly, vol. 37, no. 1, pp. 81–88, 2018. [Daring]. Tersedia: https://doi.org/10.1080/02763869.2018.1404391
M. McTear, Z. Callejas, and D. Griol, The Conversational Interface: Talking to Smart Devices. Cham, Switzerland: Springer, 2016
F. Alloatti, A. Bosca, L. Di Caro, and F. Pieraccini, “Diabetes and conversational agents: the AIDA project case study,” Artificial Intelligence Journal, vol. 1, no. 4, 2021
S. A. Javed, Z. Iqbal, and H. R. Pasha, “Cloud-Based Intelligent Virtual Assistants for E-Services,” in 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2020, pp. 1–6. [Daring]. Tersedia: https://doi.org/10.1109/iCoMET48670.2020.9073991
D. Adamopoulou and L. Moussiades, “An Overview of Chatbot Technology,” in IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI 2020), Cham, Switzerland: Springer, 2020, pp. 373–383. [Daring]. Tersedia: https://doi.org/10.1007/978-3-030-49186-4_31
R. Dale, “The return of the chatbots,” Natural Language Engineering, vol. 22, no. 5, pp. 811–817, 2016. [Daring]. Tersedia: https://doi.org/10.1017/S1351324916000243
D. Jurafsky and J. H. Martin, Speech and Language Processing, 3rd ed. London, U.K.: Pearson, 2023
B. Shawar and E. Atwell, “Chatbots: Are they Really Useful?,” LDV Forum – GLDV Journal for Computational Linguistics and Language Technology, vol. 22, no. 1, pp. 29–49, 2007
Y. Wu et al., “Application of Chatbots to Help Patients Self-Manage Diabetes: Systematic Review and Meta-Analysis,” J. Med. Internet Res., vol. –, no. –, pp. –, Dec. 2024
M. T. Ghozali et al., “Effectiveness of artificial intelligence-driven chatbot responses in diabetes knowledge: a readability and reliability assessment,” IAES Int. J. Artif. Intell., vol. 14, no. 3, pp. 2379–2388, 2024
B. Huberta and A. B. Wijaya, “Perancangan Chatbot Website Program Studi Informatika Menggunakan Framework CodeIgniter,” Jurnal Informatika dan Teknik Elektro Terapan (JITET), vol. 11, no. 3, pp. 546–554, Aug. 2023, doi: 10.23960/jitet.v11i3.3225
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



