DETEKSI SUBGRUP NYERI DADA DENGAN UMAP DAN STRATIFIKASI RISIKO

Authors

  • Muhammad Tegar Pamungkas Universitas Singaperbangsa Karawang
  • Sofi Defiyanti Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.23960/jitet.v13i3S1.7480

Abstract Views: 38 File Views: 23

Keywords:

UMAP algorithm, K-means clustering, Risk stratification, Chest pain, Machine learning

Abstract

Stratifikasi risiko pada pasien dengan nyeri dada merupakan tantangan klinis yang kompleks karena heterogenitas presentasi dan prognosis yang beragam. Penelitian ini bertujuan mengidentifikasi subgrup tersembunyi dalam tipe nyeri dada menggunakan teknik pembelajaran tanpa supervisi untuk meningkatkan akurasi prediksi risiko penyakit jantung. Dataset yang terdiri dari 918 pasien dengan 12 variabel klinis dianalisis menggunakan kombinasi UMAP (Uniform Manifold Approximation and Projection) untuk reduksi dimensi dan K-means clustering untuk identifikasi subgrup. Hasil clustering kemudian diintegrasikan dengan Random Forest classifier untuk prediksi risiko. Analisis berhasil mengidentifikasi 4 cluster dengan karakteristik risiko yang berbeda signifikan. Cluster 1 menunjukkan risiko tertinggi (86,9%) dengan dominasi nyeri dada asimtomatik dan angina akibat olahraga, sedangkan cluster 2 dan 3 memiliki risiko lebih rendah (32,2% dan 22,3%). Model prediksi yang dikembangkan mencapai akurasi 88,0% dengan AUC-ROC 0,935. Pendekatan clustering ini berhasil mengungkap pola tersembunyi yang tidak terdeteksi melalui analisis konvensional, memberikan wawasan baru untuk stratifikasi risiko yang lebih presisi dalam praktik klinis.

Downloads

Download data is not yet available.

References

C. Simonetto, S. Rospleszcz, J. C. Kaiser, and K. Furukawa, “Heterogeneity in coronary heart disease risk,” Scientific Reports, vol. 12, no. 1, p. 10131, Jun. 2022, doi: 10.1038/s41598-022-14013-3.

F. Maura et al., “Genomic Classification and Individualized Prognosis in Multiple Myeloma,” Journal of Clinical Oncology, vol. 42, no. 11, pp. 1229–1240, Apr. 2024, doi: 10.1200/JCO.23.01277.

K. Inoue, T. E. Seeman, T. Horwich, M. J. Budoff, and K. E. Watson, “Heterogeneity in the Association Between the Presence of Coronary Artery Calcium and Cardiovascular Events: A Machine-Learning Approach in the MESA Study,” Circulation, vol. 147, no. 2, pp. 132–141, Jan. 2023, doi: 10.1161/CIRCULATIONAHA.122.062626.

F. Perone et al., “Role of Cardiovascular Imaging in Risk Assessment: Recent Advances, Gaps in Evidence, and Future Directions,” Journal of Clinical Medicine, vol. 12, no. 17, p. 5563, Aug. 2023, doi: 10.3390/jcm12175563.

J.-B. Excoffier, E. Escriva, J. Aligon, and M. Ortala, “Local Explanation-Based Method for Healthcare Risk Stratification,” 2022. doi: 10.3233/SHTI220520.

S. K. Bhavnani, W. Zhang, S. Visweswaran, M. Raji, and Y.-F. Kuo, “Modeling and Interpreting Patient Subgroups in Hospital Readmission: Visual Analytical Approach.” Feb. 28, 2022. doi: 10.1101/2022.02.27.22271534.

M. Zanfardino et al., “Unsupervised machine learning for risk stratification and identification of relevant subgroups of ascending aorta dimensions using cardiac CT and clinical data,” Computational and Structural Biotechnology Journal, vol. 23, pp. 287–294, Dec. 2024, doi: 10.1016/j.csbj.2023.11.021.

A. Braytee et al., “Identification of Cancer Risk Groups through Multi-Omics Integration using Autoencoder and Tensor Analysis.” Sep. 13, 2023. doi: 10.1101/2023.09.12.23295458.

L. Hidayah and M. I. Rosadi, “PENERAPAN ALGORITMA RANDOM FOREST UNTUK MEMPREDIKSI JUMLAH SANTRI BARU,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3S1, Oct. 2024, doi: 10.23960/jitet.v12i3S1.5237.

A. Trezza, A. Visibelli, B. Roncaglia, O. Spiga, and A. Santucci, “Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI,” Applied Sciences, vol. 14, no. 20, p. 9305, Oct. 2024, doi: 10.3390/app14209305.

T. Yun et al., “Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction,” Nature Genetics, vol. 56, no. 8, pp. 1604–1613, Aug. 2024, doi: 10.1038/s41588-024-01831-6.

D. Neijzen and G. Lunter, “Unsupervised learning for medical data: A review of probabilistic factorization methods,” Statistics in Medicine, vol. 42, no. 30, pp. 5541–5554, Dec. 2023, doi: 10.1002/sim.9924.

L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,” Sep. 2020.

W. Yi, S. Bu, H.-H. Lee, and C.-H. Chan, “Comparative Analysis of Manifold Learning-Based Dimension Reduction Methods: A Mathematical Perspective,” Mathematics, vol. 12, no. 15, p. 2388, Jul. 2024, doi: 10.3390/math12152388.

M. T. Islam and J. W. Fleischer, “The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction,” Mar. 2025.

E. U. Oti, M. O. Olusola, F. C. Eze, and S. U. Enogwe, “Comprehensive Review of K-Means Clustering Algorithms,” International Journal of Advances in Scientific Research and Engineering, vol. 07, no. 08, pp. 64–69, 2021, doi: 10.31695/IJASRE.2021.34050.

J. Hu and S. Szymczak, “A review on longitudinal data analysis with random forest,” Briefings in Bioinformatics, vol. 24, no. 2, Mar. 2023, doi: 10.1093/bib/bbad002.

Downloads

Published

2025-10-19

How to Cite

Muhammad Tegar Pamungkas, & Sofi Defiyanti. (2025). DETEKSI SUBGRUP NYERI DADA DENGAN UMAP DAN STRATIFIKASI RISIKO. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.7480

Issue

Section

Articles