CAT BREED CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK ALGORITHM
DOI:
https://doi.org/10.23960/jitet.v13i3.7364Abstract Views: 128 File Views: 114
Keywords:
Convolutional Neural Network, Cat Breed Classifier, Deep Learning, Image Processing, TensorFlowAbstract
Cat breed identification is often challenging due to visual similarities between breeds, yet accurate recognition is crucial for proper care. This study aims to develop an accurate cat breed classification system using a Convolutional Neural Network (CNN) algorithm with a transfer learning approach. The model was built using the MobileNetV2 architecture on a dataset consisting of 2,387 images from 12 cat breeds. The research stages included data collection, pre-processing, model construction and training, and evaluation. Evaluation results on test data showed that the developed model achieved an accuracy of 84.52%. The model demonstrated superior performance in several classes with unique visual characteristics, but still faced challenges in other classes with similar visual characteristics. These results demonstrate that the CNN method with transfer learning is highly effective and competitive for cat breed classification tasks, with room for further development to improve performance in difficult-to-distinguish classes.
Downloads
References
K. D. Linda, Kusrini, and A. D. Hartanto, “Studi Literatur Mengenai Klasifikasi Citra Kucing Dengan Menggunakan Deep Learning: Convolutional Neural Network (CNN),” J. Electr. Eng. Comput., vol. 6, no. 1, pp. 129–137, 2024, doi: 10.33650/jeecom.v6i1.7480.
R. Gunawan, D. M. I. Hanafie, and A. Elanda, “Klasifikasi Jenis Ras Kucing Dengan Gambar Menggunakan Convolutional Neural Network (CNN),” J. Interkom J. Publ. Ilm. Bid. Teknol. Inf. dan Komun., vol. 18, no. 4, pp. 1–8, 2024, doi: 10.35969/interkom.v18i4.318.
A. N. Ramadhayani and V. Lusiana, “Klasifikasi Jenis Kucing Menggunakan Algoritma Principal Component Analysis dan K-Nearest Neighbor,” J. Inf. dan Komput., vol. 10, no. 2, pp. 257–263, 2022, doi: 10.35959/jik.v10i2.333.
P. D. Hadi, D. A. Widhining K, and F. A. Fiolana, “Identifikasi Jenis Ras Pada Kucing Menggunakan Algoritma Support Vector Machine (SVM),” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 6, no. 1, pp. 77–86, 2024, doi: 10.26905/jasiek.v6i1.10989.
R. R. Karim and A. Herlangga, “Implementasi Klasifikasi Senjata Tradisional Jawa Barat Menggunakan Convolutional Neural Network (Cnn) Dengan Metode Transfer Learning,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 1210–1216, 2024, doi: 10.23960/jitet.v12i2.4166.
G. A. Pratama, E. Y. Puspaningrum, and H. Maulana, “Convolutional Neural Network Dan Faster Region Convolutional Neural Network Untuk Klasifikasi Kualitas Biji Kopi Arabika,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 2776–2785, 2024, doi: 10.23960/jitet.v12i3.4887 CONVOLUTIONAL.
A. Herlangga, R. R. Karim, and M. K. Nurwijaya, “Penerapan Transfer Learning Efficientnetb3 Untuk Pengenalan Senjata Tradisional Sumatera Barat Menggunakan Convolutional Neural Network (Cnn),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 1416–1423, 2024, doi: 10.23960/jitet.v12i2.4256.
R. Aryanto, M. A. Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Akasara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks,” J. Inf. dan Teknol., vol. 5, no. 1, pp. 258–264, 2023, doi: 10.37034/jidt.v5i1.313.
I. B. A. Peling, I. M. P. A. Ariawan, and G. B. Subiksa, “Deteksi Bahasa Isyarat Menggunakan Tensorflow Lite dan American Sign Language (ASL),” J. Krisnadana, vol. 3, no. 2, pp. 90–100, 2024, doi: 10.58982/krisnadana.v3i2.534.
TensorFlow, “What’s new in TensorFlow 2.19,” TensorFlow Blog. Accessed: Jul. 01, 2025. [Online]. Available: https://blog.tensorflow.org/2025/03/whats-new-in-tensorflow-2-19.html?_gl=1*m3zt84*_ga*MTU3NzE3NzczLjE3NTEzNjE1OTc.*_ga_W0YLR4190T*czE3NTEzNjE1OTYkbzEkZzAkdDE3NTEzNjE1OTYkajYwJGwwJGgw
A. Akram, S. A. Rachmadinasya, F. H. Melvandino, and H. Ramza, “Klasifikasi Aktivitas Olahraga Berdasarkan Citra Foto Dengan Menggunakan Metode Convolutional Neural Network,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 1081–1086, 2023, doi: 10.23960/jitet.v11i3s1.3496.
P. Raghav, “No TitleUnderstanding of Convolutional Neural Network (CNN) — Deep Learning,” Medium. Accessed: Jul. 01, 2025. [Online]. Available: https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
E. D. Sefrila, B. Rahmat, and A. N. Sihananto, “Implementasi Arsitektur Inception V3 Dengan Optimasi Adam, SGD dan RMSP Pada Klasifikasi Penyakit Malaria,” Bridg. J. Publ. Sist. Inf. dan Telekomun., vol. 2, no. 2, pp. 69–84, 2024, doi: 10.62951/bridge.v2i2.62.
F. Ramadhani, A. Satria, and Salamah, “Implementasi Algoritma Convolutional Neural Network dalam Mengidentifikasi Dini Penyakit pada Mata Katarak,” sudo J. Tek. Inform., vol. 2, no. 4, pp. 167–175, 2023, doi: 10.56211/sudo.v2i4.408.
D. L. Z. Astuti, Samsuryadi, and D. P. Rini, “Real-Time Classification of Facial Expressions Using A Principal Component Analysis and Convolutional Neural Network,” SINERGI, vol. 23, no. 3, pp. 239–244, 2019, [Online]. Available: https://www.researchgate.net/publication/336895977_REAL-TIME_CLASSIFICATION_OF_FACIAL_EXPRESSIONS_USING_A_PRINCIPAL_COMPONENT_ANALYSIS_AND_CONVOLUTIONAL_NEURAL_NETWORK
Sriani, Armansyah, and A. Nabila, “Implementasi Deep Learning Untuk Mengidentifikasi Umur Manusia Menggunakan Convolutional Neural Network (CNN),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 1836–1843, 2024, doi: 10.23960/jitet.v12i3.4457.
A. R. Dani and I. Handayani, “Klasifikasi Motif Batik Yogyakarta Menggunakan Metode GLCM dan CNN,” J. Teknol. Terpadu, vol. 10, no. 2, pp. 142–156, 2024, doi: 10.54914/jtt.v10i2.1451.
P. Chima, “Activation Functions: ReLU & Softmax,” Medium. Accessed: Jul. 01, 2025. [Online]. Available: https://medium.com/@preshchima/activation-functions-relu-softmax-87145bf39288
I. Bakti and M. Firdaus, “Classification of Image Files of Lung X-Ray Results with Architecture Convolution Neural Network (CNN),” J. Inf. Technol., vol. 3, no. 1, pp. 26–34, 2023, doi: 10.46229/jifotech.v3i1.590.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.