LINEAR REGRESSION-BASED CALIBRATION OF THE HK1100C PRESSURE SENSOR USING ARDUINO IDE
DOI:
https://doi.org/10.23960/jitet.v13i3.6624Abstract Views: 81 File Views: 90
Abstract
Pressure sensors play a crucial role in various industrial and scientific applications. The accuracy and precision of pressure measurements depend highly on the sensors' calibration. This study aims to calibrate the HK1100C pressure sensor using a linear regression method, supported by the Arduino IDE software, and to display real-time measurement results via an I2C LCD screen. The experimental procedure involves connecting the HK1100C sensor to an Arduino UNO board, collecting pressure data using a pressure gauge as a reference, and analyzing the data through linear regression to obtain the calibration equation. The results indicate that the HK1100C sensor provides high accuracy and precision. The smallest average error was recorded at 10 PSI with a value of 0.00038%, while the most significant average error occurred at 2 PSI with a value of 0.00372%. Additionally, the standard deviation of the measurements was relatively low, indicating good data consistency. The lowest standard deviation was found at 6 PSI at 0.0012%, and the highest at 12 PSI at 0.092%. The linear regression method effectively calibrated the HK1100C sensor, resulting in accurate and consistent pressure measurements. This approach also demonstrates that the Arduino IDE is an efficient and flexible tool for developing pressure measurement systems tailored to specific needs.Downloads
References
M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, and R. Suman, “Sensors for daily life: A review,” Sensors Int., vol. 2, no. 1, p. 100121, 2021, doi: https://doi.org/10.1016/j.sintl.2021.100121.
A. Sipayung, A. Pakpahan, D. Tambunan, and Y. Tarigan, “MODIFIKASI BOILER KAPASITAS 25 KG/JAM TEKANAN 4 BAR DENGAN MEMPERBESAR BIDANG LUAS PEMANAS,” SINERGI POLMED J. Ilm. Tek. Mesin, vol. 4, pp. 35–44, Aug. 2023, doi: 10.51510/sinergipolmed.v4i2.1063.
M. Barzegar, S. Blanks, S. Gharehdash, and W. Timms, “Development of IOT-based low-cost MEMS Pressure Sensor for Groundwater level Monitoring,” Meas. Sci. Technol., vol. 34, Jul. 2023, doi: 10.1088/1361-6501/ace78f.
R. Gonzalez and C. A. Catania, “Time-delayed multiple linear regression for de-noising MEMS inertial sensors,” Comput. Electr. Eng., vol. 76, no. 1, pp. 1–12, 2019, doi: https://doi.org/10.1016/j.compeleceng.2019.02.023.
K. Kartika, H. F. Harahap, A. Asran, M. Jannah, M. Misriana, and S. Suryati, “Energy Automation Supports Energy Consumption Intensity in Classrooms,” J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5006.
J. C. Songara and J. N. Patel, “Calibration and Comparison of Various Sensors for Soil Moisture Measurement,” Measurement, vol. 197, no. 1, p. 111301, 2022, doi: https://doi.org/10.1016/j.measurement.2022.111301.
M. Mina and K. Kartika, “Monitoring System for Levels of Voltage, Current, Temperature, Methane, and Hydrogen in IoT-Based Distribution Transformers,” Int. J. Eng. Sci. Inf. Technol., vol. 3, no. 1, pp. 22–27, 2023, doi: 10.52088/ijesty.v3i1.414.
O. Flanigan, “Gas Laws ‘Underground Gas Storage Facilities Design and Implementation,’” Gulf Prof. Publ., pp. 32–39, 1995, doi: 10.1016/b978-088415204-0/50004-2.
L. L. Beranek and T. J. Mellow, “Chapter 1 - Introduction and terminology,” in Acoustics: Sound Fields and Transducers, L. L. Beranek and T. J. B. T.-A. S. F. and T. Mellow, Eds. Academic Press, 2012, pp. 1–19. doi: https://doi.org/10.1016/B978-0-12-391421-7.00001-4.
F. P. Terra, G. R. A. da Rosa, J. J. P. Prado, and P. L. J. Drews-, “A Low-Cost Prototype to Automate Agricultural Sprayers,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15835–15840, 2020, doi: https://doi.org/10.1016/j.ifacol.2020.12.365.
O. Samuelsson, E. U. Lindblom, A. Björk, and B. Carlsson, “To calibrate or not to calibrate, that is the question,” Water Res., vol. 229, no. 1, p. 119338, 2023, doi: https://doi.org/10.1016/j.watres.2022.119338.
J. Hoffman, “Chapter 28. Variations Based on Linear Regression,” in
Biostatistics for Medical and Biomedical Practitioners, Academik Press, 2015, pp. 501–511. doi: 10.1016/B978-0-12-802387-7.00028-7.
R. Hermawan, N. Suarna, I. Ali, and D. Rohman, “Optimasi Prediksi Omset Penjualan Pada Pabrik Olahan Tahu Menggunakan Algoritma Regresi Linear,” J. Inform. Dan Tek. Elektro Terap., vol. 13, no. 1, 2025, doi: 10.23960/jitet.v13i1.5888.
A. A. Sulayman, D. O. Araromi, O. E. Ayodele, H. O. Araromi, and F. N. Osuolale, “Arduino Microcontroller Based Real-Time Monitoring Of Haemodialysis Process For Patients With Kidney Disease,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 7, no. 1, p. 100403, 2024, doi: https://doi.org/10.1016/j.prime.2023.100403.
Kartika Kartika, “Temperature And Humidity Optimization To Add Save Life Strawberry (Fragaria chiloensis, L.),” International Journal of Science and Environment (IJSE), vol. 2, no. 1. pp. 1–13, 2022. doi: 10.51601/ijse.v2i1.11 LK - https://doi.org/10.51601/ijse.v2i1.11.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.