ANALISIS PERILAKU PENGGUNA TERHADAP AKSES INTERNET DI PT CHIYODA INTERNATIONAL INDONESIA MENGGUNAKAN MACHINE LEARNING

Authors

  • Adi Agustani
  • Herri Setiawan
  • Tasmi Tasmi

DOI:

https://doi.org/10.23960/jitet.v13i3.6594

Abstract Views: 34 File Views: 41

Abstract

Akses internet merupakan faktor penting dalam kelancaran operasional perusahaan. PT Chiyoda International Indonesia yang sangat bergantung pada infrastruktur TI dan konektivitas internet, menjadi objek dalam penelitian ini. Tujuan utama penelitian adalah menganalisis pola perilaku pengguna dalam mengakses internet melalui penerapan teknik machine learning menggunakan metode K-Means berbasis Python . Data yang dianalisis berasal dari lebih dari 10.000 entri aktivitas internet selama enam bulan, mencakup lima departemen utama. Hasil analisis elbow plot menunjukkan bahwa tiga cluster merupakan jumlah optimal, dengan penurunan nilai inersia sebesar 65% dibandingkan konfigurasi awal. Klasterisasi menunjukkan bahwa 40% pengguna tergolong dalam intensitas tinggi (rata-rata 4,5 jam/hari), 35% intensitas sedang (3 jam/hari), dan 25% intensitas rendah (1,5 jam/hari). Analisis visualisasi cluster plot mengungkap perbedaan signifikan antar departemen, terutama dalam jenis aplikasi yang diakses. Departemen dengan intensitas tertinggi cenderung menggunakan aplikasi non-produktif seperti media sosial dan streaming . Temuan ini menjadi dasar penting bagi perusahaan dalam mengoptimalkan alokasi bandwidth dan menetapkan kebijakan pengawasan akses. Penelitian ini diharapkan memberikan kontribusi strategi dalam pengelolaan sumber daya digital secara efisien di era transformasi teknologi.

Downloads

Download data is not yet available.

References

Al-Muhrami, M.A.S., Alawi, N.A., Alzubi, M., Al-Refaei, A.A.-A., “Affecting the Behavioural Intention to Use Electronic Banking Services Among Users in Yemen: Using an Extension of the Unified Theory of Acceptance and Use of Technology,” in 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), 2021, pp. 257–264, https://doi.org/10.1109/ICSCEE50312.2021.9497917

Badillo, S., Banfai, B., Birzele, F., Davydov, I.I., Hutchinson, L., Kam-Thong, T., Siebourg-Polster, J., Steiert, B., Zhang, J.D., “An Introduction to Machine Learning,” Clinical Pharmacology & Therapeutics, vol. 107, pp. 871–885, 2020, https://doi.org/10.1002/cpt.1796

Dogan, A., Birant, D., “Machine learning and data mining in manufacturing,” Expert Systems with Applications, vol. 166, p. 114060, 2021, https://doi.org/10.1016/J.ESWA.2020.114060

Gani, A.G., “Sejarah dan Perkembangan Internet di Indonesia,” Jurnal Mitra Manajemen, vol. 1, 2020

Govender, P., Sivakumar, V., “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019),” Atmospheric Pollution Research, vol. 11, pp. 40–56, 2020, https://doi.org/10.1016/J.APR.2019.09.009

Hari Rachmawanto, E., Atika Sari, C., Pramono, H., Shinta Sari, W., “Visitor Prediction Decision Support System at Dieng Tourism Objects Using the K-Nearest Neighbor Method,” Journal of Applied Intelligent System, 2022

Heliyanti Susana, Nana Surana, Faturohman, Kaslani, “Penerapan Model Klasifikasi Metode Naive Bayes terhadap Penggunaan Akses Internet,” JURSISTEKNI, vol. 7, pp. 25, 2021

Islam, R., Patamsetti, V.V., Gadhi, A., Gondu, R.M., Bandaru, C.M., Kesani, S.C., Abiona, O., “Design and Analysis of a Network Traffic Analysis Tool: NetFlow Analyzer,” International Journal of Communications, Network and System Sciences, vol. 16, pp. 21–29, 2023, https://doi.org/10.4236/ijcns.2023.162002

Koushik, A.N.P., Manoj, M., Nezamuddin, N., “Machine learning applications in activity-travel behaviour research: a review,” Transport Reviews, vol. 40, pp. 288–311, 2020, https://doi.org/10.1080/01441647.2019.1704307

Mahmoud Abbasi, Amin Shaharaki, Amir Tahekordi, “Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey,” Elsevier, pp. 19–41, 2021

Moseley, B., Wang, J.R., “Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search,” Journal of Machine Learning Research, 2023

Muttaqin, M., “Internet Usage Behavior of the ICT Young Workforce in the Border Region,” Journal Pekommas, vol. 4, p. 11, 2019, https://doi.org/10.30818/jpkm.2019.2040102

Nagari, S.S., Inayati, L., “Implementation of Clustering Using K-Means Method to Determine Nutritional Status,” Jurnal Biometrika dan Kependudukan, vol. 9, pp. 62–68, 2020, https://doi.org/10.20473/jbk.v9i1.2020.62-68

Nur’ Kamisa, Almira Devita P, Dian Novita, “Pengaruh Online Customer Review dan Online Customer Rating terhadap Kepercayaan Konsumen (Studi Kasus: Pengguna Shopee di Bandar Lampung),” Journal of Economic and Business Research, vol. 2, pp. 21–29, 2022

Pratap Chandra Sen, Mahiranab Hajra, Mitradu Ghosh, “Supervised Classification Algorithms in Machine Learning: A Survey and Review,” Emerging Technology in Modeling and Graphics, pp. 99–111, 2020, https://doi.org/10.1023/A:1014043630878

Rabbani, M., Wang, Y.L., Khoshkangini, R., Jelodar, H., Zhao, R., Hu, P., “A hybrid machine learning approach for malicious behaviour detection and recognition in cloud computing,” Journal of Network and Computer Applications, vol. 151, p. 102507, 2020, https://doi.org/10.1016/J.JNCA.2019.102507

Ran, X., Zhou, X., Lei, M., Tepsan, W., Deng, W., “A novel K-means clustering algorithm with a noise algorithm for capturing urban hotspots,” Applied Sciences, vol. 11, 2021, https://doi.org/10.3390/app112311202

Retnoningsih, E., Pramudita, R., “Mengenal Machine Learning Dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python,” BINA INSANI ICT JOURNAL, vol. 7, pp. 156–165, 2020

Sigit Hadi Prayogo, Dana Indra Sensue, “Analisis Usability pada Aplikasi Berbasis Web dengan Mengadopsi Model Kepuasan Pengguna (User Satisfaction),” IJoICT, 2020

Sinaga, K.P., Yang, M.S., “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, https://doi.org/10.1109/ACCESS.2020.2988796

Sitorus, Z., “Penerapan Data Mining untuk Clustering Penduduk Miskin di Kota Tanjungbalai Menggunakan Metode Algoritma K-Means,” Journal of Science and Social Research, 2024

Syed, S., Singh, H., Thangaraju, S., Thangaraju, S.K., Eazreen Bakri, N., Yok Hwa, K., “The Impact of Cyberloafing on Employees’ Job Performance: A Review of Literature,” Journal of Advances in Management Sciences & Information Systems, vol. 6, pp. 16–28, 2020, https://doi.org/10.6000/2371-1647.2020.06.02

van Engelen, J.E., Hoos, H.H., “A survey on semi-supervised learning,” Machine Learning, vol. 109, pp. 373–440, 2020, https://doi.org/10.1007/s10994-019-05855-6

Verbeeck, N., Caprioli, R.M., Van de Plas, R., “Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry,” Mass Spectrometry Reviews, 2020, https://doi.org/10.1002/mas.21602

Downloads

Published

2025-07-17

How to Cite

Agustani, A., Setiawan, H., & Tasmi, T. (2025). ANALISIS PERILAKU PENGGUNA TERHADAP AKSES INTERNET DI PT CHIYODA INTERNATIONAL INDONESIA MENGGUNAKAN MACHINE LEARNING. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3). https://doi.org/10.23960/jitet.v13i3.6594

Issue

Section

Articles