ANALISIS PERILAKU PENGGUNA TERHADAP AKSES INTERNET DI PT CHIYODA INTERNATIONAL INDONESIA MENGGUNAKAN MACHINE LEARNING
DOI:
https://doi.org/10.23960/jitet.v13i3.6594Abstract Views: 34 File Views: 41
Abstract
Akses internet merupakan faktor penting dalam kelancaran operasional perusahaan. PT Chiyoda International Indonesia yang sangat bergantung pada infrastruktur TI dan konektivitas internet, menjadi objek dalam penelitian ini. Tujuan utama penelitian adalah menganalisis pola perilaku pengguna dalam mengakses internet melalui penerapan teknik machine learning menggunakan metode K-Means berbasis Python . Data yang dianalisis berasal dari lebih dari 10.000 entri aktivitas internet selama enam bulan, mencakup lima departemen utama. Hasil analisis elbow plot menunjukkan bahwa tiga cluster merupakan jumlah optimal, dengan penurunan nilai inersia sebesar 65% dibandingkan konfigurasi awal. Klasterisasi menunjukkan bahwa 40% pengguna tergolong dalam intensitas tinggi (rata-rata 4,5 jam/hari), 35% intensitas sedang (3 jam/hari), dan 25% intensitas rendah (1,5 jam/hari). Analisis visualisasi cluster plot mengungkap perbedaan signifikan antar departemen, terutama dalam jenis aplikasi yang diakses. Departemen dengan intensitas tertinggi cenderung menggunakan aplikasi non-produktif seperti media sosial dan streaming . Temuan ini menjadi dasar penting bagi perusahaan dalam mengoptimalkan alokasi bandwidth dan menetapkan kebijakan pengawasan akses. Penelitian ini diharapkan memberikan kontribusi strategi dalam pengelolaan sumber daya digital secara efisien di era transformasi teknologi.Downloads
References
Al-Muhrami, M.A.S., Alawi, N.A., Alzubi, M., Al-Refaei, A.A.-A., “Affecting the Behavioural Intention to Use Electronic Banking Services Among Users in Yemen: Using an Extension of the Unified Theory of Acceptance and Use of Technology,” in 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), 2021, pp. 257–264, https://doi.org/10.1109/ICSCEE50312.2021.9497917
Badillo, S., Banfai, B., Birzele, F., Davydov, I.I., Hutchinson, L., Kam-Thong, T., Siebourg-Polster, J., Steiert, B., Zhang, J.D., “An Introduction to Machine Learning,” Clinical Pharmacology & Therapeutics, vol. 107, pp. 871–885, 2020, https://doi.org/10.1002/cpt.1796
Dogan, A., Birant, D., “Machine learning and data mining in manufacturing,” Expert Systems with Applications, vol. 166, p. 114060, 2021, https://doi.org/10.1016/J.ESWA.2020.114060
Gani, A.G., “Sejarah dan Perkembangan Internet di Indonesia,” Jurnal Mitra Manajemen, vol. 1, 2020
Govender, P., Sivakumar, V., “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019),” Atmospheric Pollution Research, vol. 11, pp. 40–56, 2020, https://doi.org/10.1016/J.APR.2019.09.009
Hari Rachmawanto, E., Atika Sari, C., Pramono, H., Shinta Sari, W., “Visitor Prediction Decision Support System at Dieng Tourism Objects Using the K-Nearest Neighbor Method,” Journal of Applied Intelligent System, 2022
Heliyanti Susana, Nana Surana, Faturohman, Kaslani, “Penerapan Model Klasifikasi Metode Naive Bayes terhadap Penggunaan Akses Internet,” JURSISTEKNI, vol. 7, pp. 25, 2021
Islam, R., Patamsetti, V.V., Gadhi, A., Gondu, R.M., Bandaru, C.M., Kesani, S.C., Abiona, O., “Design and Analysis of a Network Traffic Analysis Tool: NetFlow Analyzer,” International Journal of Communications, Network and System Sciences, vol. 16, pp. 21–29, 2023, https://doi.org/10.4236/ijcns.2023.162002
Koushik, A.N.P., Manoj, M., Nezamuddin, N., “Machine learning applications in activity-travel behaviour research: a review,” Transport Reviews, vol. 40, pp. 288–311, 2020, https://doi.org/10.1080/01441647.2019.1704307
Mahmoud Abbasi, Amin Shaharaki, Amir Tahekordi, “Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey,” Elsevier, pp. 19–41, 2021
Moseley, B., Wang, J.R., “Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search,” Journal of Machine Learning Research, 2023
Muttaqin, M., “Internet Usage Behavior of the ICT Young Workforce in the Border Region,” Journal Pekommas, vol. 4, p. 11, 2019, https://doi.org/10.30818/jpkm.2019.2040102
Nagari, S.S., Inayati, L., “Implementation of Clustering Using K-Means Method to Determine Nutritional Status,” Jurnal Biometrika dan Kependudukan, vol. 9, pp. 62–68, 2020, https://doi.org/10.20473/jbk.v9i1.2020.62-68
Nur’ Kamisa, Almira Devita P, Dian Novita, “Pengaruh Online Customer Review dan Online Customer Rating terhadap Kepercayaan Konsumen (Studi Kasus: Pengguna Shopee di Bandar Lampung),” Journal of Economic and Business Research, vol. 2, pp. 21–29, 2022
Pratap Chandra Sen, Mahiranab Hajra, Mitradu Ghosh, “Supervised Classification Algorithms in Machine Learning: A Survey and Review,” Emerging Technology in Modeling and Graphics, pp. 99–111, 2020, https://doi.org/10.1023/A:1014043630878
Rabbani, M., Wang, Y.L., Khoshkangini, R., Jelodar, H., Zhao, R., Hu, P., “A hybrid machine learning approach for malicious behaviour detection and recognition in cloud computing,” Journal of Network and Computer Applications, vol. 151, p. 102507, 2020, https://doi.org/10.1016/J.JNCA.2019.102507
Ran, X., Zhou, X., Lei, M., Tepsan, W., Deng, W., “A novel K-means clustering algorithm with a noise algorithm for capturing urban hotspots,” Applied Sciences, vol. 11, 2021, https://doi.org/10.3390/app112311202
Retnoningsih, E., Pramudita, R., “Mengenal Machine Learning Dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python,” BINA INSANI ICT JOURNAL, vol. 7, pp. 156–165, 2020
Sigit Hadi Prayogo, Dana Indra Sensue, “Analisis Usability pada Aplikasi Berbasis Web dengan Mengadopsi Model Kepuasan Pengguna (User Satisfaction),” IJoICT, 2020
Sinaga, K.P., Yang, M.S., “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, https://doi.org/10.1109/ACCESS.2020.2988796
Sitorus, Z., “Penerapan Data Mining untuk Clustering Penduduk Miskin di Kota Tanjungbalai Menggunakan Metode Algoritma K-Means,” Journal of Science and Social Research, 2024
Syed, S., Singh, H., Thangaraju, S., Thangaraju, S.K., Eazreen Bakri, N., Yok Hwa, K., “The Impact of Cyberloafing on Employees’ Job Performance: A Review of Literature,” Journal of Advances in Management Sciences & Information Systems, vol. 6, pp. 16–28, 2020, https://doi.org/10.6000/2371-1647.2020.06.02
van Engelen, J.E., Hoos, H.H., “A survey on semi-supervised learning,” Machine Learning, vol. 109, pp. 373–440, 2020, https://doi.org/10.1007/s10994-019-05855-6
Verbeeck, N., Caprioli, R.M., Van de Plas, R., “Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry,” Mass Spectrometry Reviews, 2020, https://doi.org/10.1002/mas.21602
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.