IMPLEMENTASI TEMPLATE MATCHING DAN SEGMENTASI CITRA UNTUK DETEKSI KEABSAHAN DAN DENOMINASI UANG KERTAS PADA RASPBERRY PI
DOI:
https://doi.org/10.23960/jitet.v13i2.6547Abstract Views: 139 File Views: 109
Abstract
Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem otomatisasi untuk mendeteksi keaslian dan denominasi uang kertas Rupiah berbasis Raspberry Pi dengan metode template matching dan pemrosesan citra menggunakan OpenCV. Latar belakang penelitian ini didasarkan pada masih maraknya peredaran uang palsu yang berpotensi merugikan pelaku Usaha Mikro, Kecil, dan Menengah (UMKM). Dengan menggunakan kamera smartphone dan sinar ultraviolet, sistem dapat mendeteksi nominal dan keaslian uang berdasarkan fitur seperti serial number dan benang pengaman. Pengujian menunjukkan akurasi deteksi keabsahan dan nominal sebesar 91,5%. Hasil ini menunjukkan efektivitas metode yang digunakan dalam membantu transaksi keuangan yang lebih aman dan berpotensi untuk diimplementasikan secara luas sebagai solusi deteksi uang palsu yang hemat biaya dan praktis bagi pelaku UMKM.
This study aims to design and implement an automation system to detect the authenticity and denomination of Rupiah banknotes based on Raspberry Pi with the template matching method and image processing using OpenCV. The background of this study is based on the rampant circulation of counterfeit money that has the potential to harm Micro, Small, and Medium Enterprises (MSMEs). By using a smartphone camera and ultraviolet light, the system can detect the nominal and authenticity of money based on features such as serial numbers and security threads. Testing shows an accuracy of detecting the validity and nominal of 91.5%. These results show the effectiveness of the method used in helping safer financial transactions and has the potential to be widely implemented as a cost-effective and practical counterfeit money detection solution for MSMEs.
Downloads
References
Bank Indonesia, “Pencegahan Rupiah Palsu,” Bank Indonesia, 2024. [Online]. Available:https://www.bi.go.id/id/rupiah/pencegahan-rupiah-palsu/Default.aspx
A. R. Putri and S. Nugroho, “Analisis Dampak Peredaran Uang Palsu terhadap Kepercayaan Konsumen UMKM di Indonesia,” Jurnal Ekonomi dan Bisnis, vol. 15, no. 2, pp. 87–95, 2020.
M. R. Islam, C. Shahnaz, and M. M. Hassan, “Bangladeshi banknote recognition using image processing and machine learning techniques,” Journal of King Saud University – Computer and Information Sciences, vol. 33, no. 6, pp. 693–700, 2021. [Online]. Available: https://doi.org/10.1016/j.jksuci.2018.09.014
J. S. R. Jang, S. W. Lee, and W. S. Lee, “A study of object detection using convolutional neural networks and template matching,” Journal of Image Processing and Computer Vision, vol. 28, no. 3, pp. 234–245, 2020.
K. S. Gupta, A. M. Shetty, and N. D. Gupta, “Object detection using Histogram of Oriented Gradient and Template Matching,” International Journal of Computer Vision and Image Processing, vol. 16, no. 4, pp. 112–120, 2021.
M. Kapiudin, “Perancangan Alat Identifikasi Nilai Mata Uang Kertas Serta Keasliannya Menggunakan Metode Template Matching Bagi Penyandang Tunanetra,” EPSILON: Journal of Electrical Engineering and Information Technology, vol. 18, no. 3, 2020. [Online]. Available: https://epsilon.unjani.ac.id/index.php/epsilon/article/view/31
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2008.
A. R. Putri and S. Nugroho, “Analisis Dampak Peredaran Uang Palsu terhadap Kepercayaan Konsumen UMKM di Indonesia,” Jurnal Ekonomi dan Bisnis, vol. 15, no. 2, pp. 87–95, 2020.
H. Yu, Y. Zhang, dan Y. Chen, “Real-Time Currency Denomination Recognition Using Template Matching and Deep Learning,” Journal of Real-Time Image Processing, vol. 17, no. 2, pp. 249–262, 2020.
M. S. Hossain et al., “Currency recognition using Template Matching and Edge Detection,” International Journal of Computer Applications, vol. 178, no. 7, pp. 1–6, 2019. [Online]. Available: https://doi.org/10.5120/ijca2019918865
R. Dwivedi, A. Sharma, dan M. Singh, “Currency Recognition and Counterfeit Detection Using Template Matching and Image Segmentation,” International Journal of Computer Vision and Image Processing, vol. 12, no. 3, pp. 45–56, 2022.
Viso.ai, "What is OpenCV? The Complete Guide," Viso.ai, 2025. [Online]. Available: https://viso.ai/computer-vision/opencv/
J. Brownlee, "A Gentle Introduction to OpenCV," Machine Learning Mastery, 2023. [Online]. Available: https://www.machinelearningmastery.com/a-gentle-introduction-to-opencv-an-open-source-library-for-computer-vision-and-machine-learning/
I. Yaqoob, S. U. Rehman, M. Imran, dan M. Guizani, “Intelligent Edge Computing for IoT-Based Smart Applications: Vision and Challenges,” IEEE Network, vol. 36, no. 2, pp. 40–47, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika dan Teknik Elektro Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.