DETEKSI DINI PENYAKIT DAUN PADI MENGGUNAKAN INTEGRASI GLCM DAN KNN

Authors

  • Nila Farihah Research Center for Intelligent Distributed Surveillance and Security, Universitas Dian Nuswantoro, Semarang, 50131, Indonesia

DOI:

https://doi.org/10.23960/jitet.v13i3.6543

Abstract Views: 149 File Views: 140

Abstract

Produktivitas panen padi di Indonesia masih terganggu oleh penyakit daun yang sulit dikenali secara visual. Penelitian ini bertujuan untuk mengembangkan sistem deteksi dini berbasis citra digital menggunakan ekstraksi fitur Gray Level Co-occurrence Matrix (GLCM) dan klasifikasi K-Nearest Neighbor (KNN). Dataset terdiri dari 4684 citra tiga kelas penyakit daun padi. Proses mencakup konversi RGB ke HSV, segmentasi, ekstraksi enam fitur tekstur, dan klasifikasi. Hasil terbaik diperoleh pada k senilai 5 dengan akurasi, presisi, recall, dan F1-score sebesar 94,2%. Metode ini efektif membedakan daun sehat dan terinfeksi, serta dapat meningkatkan kualitas hasil panen padi sehingga dapat mendukung program pemerintah melalui Makan Bergizi Gratis (MBG). Penelitian ini juga membuka peluang pengembangan sistem berbasis mobile dengan integrasi kecerdasan buatan untuk kemudahan penggunaan di lapangan.

Downloads

Download data is not yet available.

References

A. K. Wijayanto, L. B. Prasetyo, and et al, “Textural features for BLB disease damage assessment in paddy fields using drone data and machine learning: Enhancing disease detection accuracy,” Smart Agricultural Technology, vol. 8, Aug. 2024, doi: 10.1016/j.atech.2024.100498.

A. Q. Pudjiastuti, G. M. K. Arisena, and et al, “Rice Import Development in Indonesia,” SOCA: Jurnal Sosial, Ekonomi Pertanian, vol. 15, no. 2, p. 390, Jun. 2021, doi: 10.24843/soca.2021.v15.i02.p14.

P. Sudharshan Duth and P. Rithik Lal, “Paddy Leaf Disease Classification Using Machine Learning and Deep Learning Techniques,” in 2022 International Conference on Futuristic Technologies, INCOFT 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/INCOFT55651.2022.10094429.

P. Kulkarni, S. Shastri, and A. Professor, “Rice Leaf Diseases Detection Using Machine Learning,” pp. 17–22, [Online]. Available: www.jsrtjournal.com

A. Atikah Merlinda and Yusuf Yusmar, “Analisis Program Makan Gratis Prabowo Subianto Terhadap Strategi Peningkatan Motivasi Belajar Siswa di Sekolah Tinjauan dari Perspektif Sosiologi Pendidikan,” Journal of Multidisciplinary Research and Development, vol. 7, 2025, doi: https://doi.org/10.38035/rrj.v7i2.

D. W. Rustanto, F. Liantoni, and N. P. T. Prakisya, “Identifikasi Penyakit Daun pada Tanaman Padi Menggunakan Ekstraksi Fitur Gray Level Co-occurrence Matrix (GLCM) dan Metode K-Nearest Neighbour (KNN),” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 12, no. 1, p. 100, Jan. 2024, doi: 10.26418/justin.v12i1.69752.

Siti Saniah and Mhd. Furqan, “Classification Of Rice Plant Diseases Using K-Nearest Neighbor Algorithm Based On Hue Saturation Value Color Extraction And Gray Level Co-Occurrence Matrix Features,” Jurnal Teknologi dan Open Source, vol. 7, no. 2, pp. 212–223, Dec. 2024, doi: 10.36378/jtos.v7i2.3972.

C. Nyasulu et al., “A comparative study of Machine Learning-based classification of Tomato fungal diseases: Application of GLCM texture features,” Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21697.

E. D. S. Mulyani, H. J. Pramana, and et al, “Classification of Rice Leaf Diseases Based on Texture and Leaf Colour,” in 2022 4th International Conference on Cybernetics and Intelligent System, ICORIS 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/ICORIS56080.2022.10031403.

V. Kumar, T. Docse, P. Kumar, S. Docse, and A. Pandey, “Hue based Plant Leaves Disease Detection and Classification Using Machine Learning Approach,” 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), 2021, doi: 10.1109/CSNT.2021.104.

M. Y. Pusadan, I. Safitri, and et al, “The Image Extraction Using the HSV Method to Determine the Maturity Level of Palm Oil Fruit with the k-nearest Neighbor Algorithm,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 6, pp. 1448–1456, Dec. 2023, doi: 10.29207/resti.v7i6.5558.

P. Hidayat, R. Kurniawan, Y. A. Wijaya, and T. Suprapti, “Optimasi Algoritma K-Nearest (KNN) Neighbors Pada Prediksi Risiko Penyakit Kardiovaskular,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 1, Jan. 2025, doi: 10.23960/jitet.v13i1.5864.

L. Guadarrama, C. Paredes, and O. Mercado, “Plant Disease Diagnosis in the Visible Spectrum,” Applied Sciences (Switzerland), vol. 12, no. 4, Feb. 2022, doi: 10.3390/app12042199.

Z. H. Husin, N. S. A. M. Taujuddin, S. Sari, and et al, “Bacterial Leaf Blight (BLB) Disease Detection Using Hue, Saturation, Value (HSV) Band Threshold Method,” in Lecture Notes in Electrical Engineering, Springer Science and Business Media Deutschland GmbH, 2022, pp. 403–420. doi: 10.1007/978-981-16-2406-3_31.

J. Amin et al., “An Integrated Design Based on Dual Thresholding and Features Optimization for White Blood Cells Detection,” IEEE, vol. 9, pp. 151421–151433, 2021, doi: 10.1109/ACCESS.2021.3123256.

B. G. Kaushalya Madhavi, A. Bhujel, N. E. Kim, and H. T. Kim, “Measurement of Overlapping Leaf Area of Ice Plants Using Digital Image Processing Technique,” Agriculture (Switzerland), vol. 12, no. 9, Sep. 2022, doi: 10.3390/agriculture12091321.

A. A. Huda, B. Setiaji, and F. R. Hidayat, “Implementasi Gray Level Co-Occurrence Matrix (GLCM) Untuk Klasifikasi Penyakit Daun Padi,” 2022. [Online]. Available: www.ejournal.unib.ac.id/index.php/pseudocode

M. Raeisi and A. B. Sesay, “A Distance Metric for Uneven Clusters of Unsupervised K-Means Clustering Algorithm,” IEEE, vol. 10, pp. 86286–86297, 2022, doi: 10.1109/ACCESS.2022.3198992.

Downloads

Published

2025-07-14

How to Cite

Farihah, N. (2025). DETEKSI DINI PENYAKIT DAUN PADI MENGGUNAKAN INTEGRASI GLCM DAN KNN. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3). https://doi.org/10.23960/jitet.v13i3.6543

Issue

Section

Articles