ANALYSIS OF LOAD ON PERMANENT MAGNET SYNCHRONOUS GENERATOR (PMSG) 12S8P WITH SPEED VARIATION

Authors

  • Majdi Wandika Universitas Siliwangi
  • Linda Faridah Universitas Siliwangi

DOI:

https://doi.org/10.23960/jitet.v13i1.5703

Abstract Views: 92 File Views: 175

Abstract

Abstract. This study investigates the impact of speed variation on the performance of a Permanent Magnet Synchronous Generator (PMSG) configured with 12 slots and 8 poles (12S8P) for wind energy conversion systems. PMSG has gained attention due to its high efficiency, simple design, and ability to operate effectively at low speeds, making it particularly suitable for renewable energy applications like wind turbines. Using MagNet simulation software, the performance of the PMSG was analyzed over a speed range of 1000–6000 rpm and load variations of 10–50 ohms. The results showed a maximum magnetic flux of 0.000927 Wb, while the no-load average voltage was 17.78 V at a speed of 1000 rpm. Furthermore, it was observed that voltage and current increased proportionally with speed. Optimal torque performance was achieved at a 30-ohm load at a speed of 5000 rpm, highlighting the importance of load optimization for effective energy conversion. Efficiency analysis revealed that the generator achieved its highest efficiency of 92.96% at a 10-ohm load and a speed of 5000 rpm. This study also emphasizes the influence of material properties, slot-pole design, and load conditions on generator performance. These findings provide critical insights for the design and optimization of wind turbines, particularly in regions with varying wind speeds. Moreover, this research contributes to advancing the utilization of renewable energy technologies by offering data-driven strategies for enhancing system efficiency and reliability..

Downloads

Download data is not yet available.

References

L. Faridah, “for Communal and Administrative Load at 3 Regions in Maluku , Indonesia,” 2018 Conf. Power Eng. Renew. Energy, no. June 2017, pp. 1–5, 2018.

L. Faridah et al., “DESIGN OF A HYBRID POWER GENERATION SYSTEM USING SOLAR AND WIND ENERGY IN CIPATUJAH,” vol. 2, no. 25, pp. 107–114, 2024.

L. Faridah, “Planning of Solar Generation for Renewable Energy Development in the Evironment of Univeritas Siliwangi , Campus II Mugasari,” vol. 06, no. 2, pp. 59–63, 2024.

G. R. Soekarno, S. Sundari, M. S. Boedoyo, and L. Sianipar, “Pajak Karbon sebagai Instrumen Kebijakan untuk Mendorong Transisi Energi dan Pertumbuhan Ekonomi yang Berkelanjutan,” El-Mal J. Kaji. Ekon. Bisnis Islam, vol. 5, no. 4, pp. 2015–2026, 2024, doi: 10.47467/elmal.v5i4.870.

M. Ammarnurhandyka, F. Sains, and U. Diponegoro, “Peran Teknologi Hijau dalam Mencapai Pembangunan Berkelanjutan di Masa Depan,” JECTH J. Econ. Technol. , Soc. Humanit., vol. 1, no. 1, pp. 1–7, 2023, [Online]. Available: https://jetch.id/index.php/jetch/article/view/5/5.

G. Msigwa, J. O. Ighalo, and P.-S. Yap, “Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives,” Sci. Total Environ., vol. 849, p. 157755, 2022, doi: https://doi.org/10.1016/j.scitotenv.2022.157755.

M. J. B. Kabeyi and O. A. Olanrewaju, “Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply,” Front. Energy Res., vol. 9, 2022, doi: 10.3389/fenrg.2021.743114.

Directorate General for Electricity and Energy Utilization, “Rencana Umum Kementerian Energi Dan Sumber Daya Mineral,” pp. 1–90, 2015, [Online]. Available: https://gatrik.esdm.go.id/assets/uploads/download_index/files/562b5-draft-rukn-2015-2034.

PLN, “Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PLN 2017-2026 Sesuai Keputusan Menteri ESDM No. 1415 K/20/MEM/2017 Tanggal 29 Maret 2017,” Ruptl, vol. 1, no. 1, pp. 1–58, 2017.

Y. Alexandrova, R. S. Semken, and J. Pyrhönen, “Permanent magnet synchronous generator design solution for large direct-drive wind turbines: Thermal behavior of the LC DD-PMSG,” Appl. Therm. Eng., vol. 65, no. 1, pp. 554–563, 2014, doi: https://doi.org/10.1016/j.applthermaleng.2014.01.054.

A. Hebala, W. A. M. Ghoneim, and H. A. Ashour, “Detailed Design Procedures for Low-Speed, Small-Scale, PMSG Direct-Driven by Wind Turbines,” in 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 697–703, doi: 10.1109/ICELMACH.2018.8507071.

D. Zhou, F. Blaabjerg, T. Franke, M. Tønnes, and M. Lau, “Comparison of Wind Power Converter Reliability With Low-Speed and Medium-Speed Permanent-Magnet Synchronous Generators,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6575–6584, 2015, doi: 10.1109/TIE.2015.2447502.

I. N. Darmawan, S. A. Mudilulail, and K. Kholistianingsih, “Effect of Rotor Teeth Width Variations on Back EMF Constant of a 12-Slot 8-Pole Permanent Magnet Synchronous Generator: A Finite Element Analysis,” Appl. Eng. Innov. Technol., vol. 1, no. 1, pp. 23–30, 2024, doi: 10.62777/aeit.v1i1.10.

Veronica Ernita Kristianti, Priska Restu Utami, and Aris Susanto, “Design Analysis of Permanent Magnet Synchronous Generator (Pmsg) 18 Slot 8 Pole to Seek Efficiency in Series and Parallel Circuits,” Formosa J. Appl. Sci., vol. 2, no. 7, pp. 1633–1648, 2023, doi: 10.55927/fjas.v2i7.5142.

A. Mulyadi, M. Amin, R. Lestari, R. Gozali, and B. Kaloko, “Analisis Efisiensi Kinerja Motor BLDC Menggunakan Metode Kontrol Sliding Mode Observer PI,” vol. 8, pp. 86–91, Dec. 2022, doi: 10.19184/jaei.v8i3.34998.

S. Generator, S. Pole, and D. Lumbantoruan, “Salah satu syarat untuk memenuhi gelar sarjana SKRIPSI Oleh FAKULTAS TEKNIK UNIVERSITAS MEDAN AREA MEDAN Diajukan untuk memenuhi persyaratan sarjana Teknik GENERATOR 12 SLOT 8 POLE DENGAN MENGGUNAKAN FEM Disetujui oleh : Pembingbing I Ir . Zulkifli Bahri ,” 2022.

Downloads

Published

2025-01-20

How to Cite

Wandika, M., & Faridah, L. (2025). ANALYSIS OF LOAD ON PERMANENT MAGNET SYNCHRONOUS GENERATOR (PMSG) 12S8P WITH SPEED VARIATION. Jurnal Informatika Dan Teknik Elektro Terapan, 13(1). https://doi.org/10.23960/jitet.v13i1.5703

Issue

Section

Articles