DETECTION OF CYBERBULLYING USING SVM, NAIVE BAYES, AND RANDOM FOREST ALGORITHM

Monica Fachrita Ruziqiana, Lailatul Hidayah, Mohammad Arif Rasyidi

Abstract


Social media usage has been steadily increasing, with Instagram emerging as one of the most prominent platforms. As of January 2023, Instagram had 1.318 billion users, predominantly aged 18-24. While teenagers report enhanced self-confidence and diminished feelings of loneliness, social media also facilitates cyberbullying, impacting 35% of adolescents with low emotional well-being. This research seeks to develop a model for detecting cyberbullying in Instagram comments, classifying them into negative, positive, and neutral categories using SVM, Naïve Bayes, and Random Forest algorithms. The methodology encompasses data collection, preprocessing, text transformation via TF-IDF, and a comparative analysis. Grid search is employed to optimize algorithm parameters. Initial results indicated that Naïve Bayes and SVM achieved an accuracy of 75.47%, while Random Forest reached 69.88%. Following parameter tuning, SVM's accuracy improved to 97.79%, whereas Random Forest's decreased to 66.51%. The findings underscore the superior performance of SVM with parameter tuning in detecting Instagram cyberbullying.

Full Text:

PDF 3384-3392

References


Stacy Jo Dixon, ‘Leading countries based on Instagram audience size as of January 2024 (in millions)’, 2024.

Ditch the label, ‘The annual bullying survey’, 2017.

G. K. Bhatia, ‘The role of education in combatting cyberbullying in Indonesia’, Chilfund Alliance, 2023. [Online]. Available: https://childfundalliance.org/2023/11/28/the-role-of-education-in-combatting-cyberbullying-in-indonesia/.

H. Dani, J. Li, and H. Liu, ‘Sentiment Informed Cyberbullying Detection in Social Media’, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10534 LNAI, pp. 52–67, 2017.

J. Van Tiel, ‘Cyberbullying, an overlooked and ever growing danger to the development of children A Report from KidsRights’, 2020.

A. Y. Laora and F. Sanjaya, ‘Fenomena Cyberbullying di Media Sosial Instagram (Studi Deskriptif Tentang Kesehatan Mental Pada Generasi Z Usia 20-25 Tahun di Jakarta)’, Oratio Directa, vol. 3, no. 1, pp. 346–368, 2021.

A. Rachmayanti and Y. Candrasari, ‘Perilaku Cyberbullying Di Instagram’, Linimasa J. Ilmu Komun., vol. 5, no. 1, pp. 1–12, 2022.

T. H. H. Aldhyani, M. H. Al-Adhaileh, and S. N. Alsubari, ‘Cyberbullying Identification System Based Deep Learning Algorithms’, Electron., vol. 11, no. 20, 2022.

M. B. Ismiati, ‘Deteksi Komentar Negatif Di Instagram Menggunakan Algoritma Naive Bayes Calssifier’, in Prosiding SNST ke-9, 2018, vol. 9, pp. 243–248.

W. Athira Luqyana, I. Cholissodin, and R. S. Perdana, ‘Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine’, J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4704–4713, 2018.

A. Aprianto, W. Maharani, and A. Herdiani, ‘Analisis Sentimen Dan Peringkasan Opini Pada Ulasan Produk Menggunakan Algoritma Random Forest’, eProceedings Eng., vol. 3, no. 3, 2016.

M. Z. Naf’an, A. A. Bimantara, A. Larasati, E. M. Risondang, and N. A. S. Nugraha, ‘Sentiment Analysis of Cyberbullying on Instagram User Comments’, J. Data Sci. Its Appl., vol. 2, no. 1, pp. 88–98, 2019.

S. F. Tahir and C. A. Sugianto, ‘OPTIMASI NAIVE BAYES MENGGUNAKAN ALGORITMA GENETIKA PADA KLASIFIKASI KOMENTAR CYBERBULLYING PADA MEDIA SOSIAL X’, J. Inform. dan Tek. Elektro Terap., vol. 12, 2024.

A. Alabdulwahab, M. A. Haq, and M. Alshehri, ‘Cyberbullying Detection using Machine Learning and Deep Learning’, Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 10, pp. 424–432, 2023.

Ç. O. Aliyeva and M. Yağanoğlu, ‘Deep learning approach to detect cyberbullying on twitter’, Multimed. Tools Appl., 2024.

T. P. Handayani and M. I. Abas, ‘Comparative Analysis of CNN-LSTM and LSTM Models for Cyberbullying Detection with Increasing Dataset Sizes’, J. Ilmu Komput., vol. 4, no. 2, pp. 75–85, 2024.

T. Pranckevičius and V. Marcinkevičius, ‘Comparison of Naive Bayes, Random Forest, Decision Tree, Support Vector Machines, and Logistic Regression Classifiers for Text Reviews Classification’, Balt. J. Mod. Comput., vol. 5, no. 2, 2017.

M. Guia, R. R. Silva, and J. Bernardino, ‘Comparison of Naive Bayes, support vector machine, decision trees and random forest on sentiment analysis’, IC3K 2019 - Proc. 11th Int. Jt. Conf. Knowl. Discov. Knowl. Eng. Knowl. Manag., vol. 1, pp. 525–531, 2019.

A. Ramachandran, S. Ashok, and T. Remya Nair, ‘A Factual Sentiment Analysis on Instagram Data - A Comparative Study Using Machine Learning Algorithms’, Proc. - 2022 Algorithms, Comput. Math. Conf. ACM 2022, pp. 1–5, 2022.

J. Singh and P. Tripathi, ‘Sentiment analysis of Twitter data by making use of SVM, Random Forest and Decision Tree algorithm’, Proc. - 2021 IEEE 10th Int. Conf. Commun. Syst. Netw. Technol. CSNT 2021, pp. 193–198, 2021.

A. Nayak and S. Natarajan, ‘Comparative study of Naïve Bayes , Support Vector Machine and Random Forest Classifiers in Sentiment Analysis of Twitter feeds’, Int. J. Adv. Stud. Comput. Sci. Eng. IJASCSE, vol. 5, no. 1, pp. 14–17, 2016.

M. S. Ma’arif, J. H. Jaman, and A. S. Y. Irawan, ‘ANALISIS SENTIMEN ULASAN APLIKASI INVESTASI MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE BERBASIS PARTICLE SWARM OPTIMIZATION’, J. Inform. dan Elektro Terap., 2024.

F. Millennianita, U. Athiyah, and A. W. Muhammad, ‘Comparison of Naïve Bayes Classifier and Support Vector Machine Methods for Sentiment Classification of Responses to Bullying Cases on Twitter’, vol. 1, no. 1, pp. 11–26, 2024.

T. L. Nikmah, M. Z. Ammar, Y. R. Allatif, R. M. P. Husna, P. A. Kurniasari, and A. S. Bahri, ‘Comparison of LSTM, SVM, and naive bayes for classifying sexual harassment tweets’, J. Soft Comput. Explor., vol. 3, no. 2, 2022.

M. Andriansyah et al., ‘Cyberbullying comment classification on Indonesian Selebgram using support vector machine method’, Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-January, pp. 1–5, 2017.

A. Muhariya, I. Riadi, Y. Prayudi, and I. A. Saputro, ‘Utilizing K-means Clustering for the Detection of Cyberbullying Within Instagram Comments’, Ing. des Syst. d’Information, vol. 28, no. 4, pp. 939–949, 2023.




DOI: http://dx.doi.org/10.23960/jitet.v12i3.5183

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung
Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
Email: jitet@eng.unila.ac.id
Website : https://journal.eng.unila.ac.id/index.php/jitet

Copyright (c) Jurnal Informatika dan Teknik Elektro Terapan (JITET)
pISSN: 2303-0577   eISSN: 2830-7062