PERBANDINGAN SEGMENTASI CITRA SENI TARI PENDET DAN SENI BELA DIRI PENCAK SILAT: PENDEKATAN DENGAN MULTIRES UNET
Abstract
Full Text:
PDF 1608-1614References
K. V. V Kumar and P. V. V Kishore, “Indian Classical Dance Mudra Classification Using HOG Features and SVM Classifier,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 5, pp. 2537–2546, 2017, doi: 10.11591/ijece.v7i1.pp2537-2546.
F. Sun, V. Ajith Kumar, G. Yang, A. Zhang, and Y. Zhang, “Circle-u-net: An efficient architecture for semantic segmentation,” Algorithms, vol. 14, no. 6. MDPI AG, 2021. doi: 10.3390/a14060159.
N. Ibtehaz and M. S. Rahman, “MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation,” Neural Networks, vol. 121, pp. 74–87, Jan. 2020, doi: 10.1016/j.neunet.2019.08.025.
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” May 2015, [Online]. Available: http://arxiv.org/abs/1505.04597
Data Science meets Cyber Security, “IMAGE SEGMENTATION: A COMPREHENSIVE GUIDE.” Accessed: Mar. 21, 2024. [Online]. Available: https://medium.com/@datasciencemeetscybersecurity/image-segmentation-a-comprehensive-guide-c5ccded8af70
S. Ediyono, S. Teguh, W. Fakultas, and I. Budaya, “Memahami Makna Seni dalam Pencak Silat.”
L. Y. MENG and Y. KARULUS, “THE INDONESIA-MALAYSIA CULTURAL HERITAGE DISPUTES: A CASE STUDY OF THE PENDET DANCE AND RASA SAYANGE FOLK SONG,” MANU Jurnal Pusat Penataran Ilmu dan Bahasa (PPIB), Jun. 2019, doi: 10.51200/manu.v0i0.1880.
K. Armanious, V. Kumar, S. Abdulatif, T. Hepp, S. Gatidis, and B. Yang, “ipA-MedGAN: INPAINTING OF ARBITRARY REGIONS IN MEDICAL IMAGING,” 2020.
K. B. Soulami, N. Kaabouch, M. N. Saidi, and A. Tamtaoui, “Breast cancer: One-stage automated detection, segmentation, and classification of digital mammograms using UNet model based-semantic segmentation,” Biomed Signal Process Control, vol. 66, Apr. 2021, doi: 10.1016/j.bspc.2021.102481.
K. Sanjar, O. Bekhzod, J. Kim, J. Kim, A. Paul, and J. Kim, “Improved U-net: Fully convolutional network model for skin-lesion segmentation,” Applied Sciences (Switzerland), vol. 10, no. 10, May 2020, doi: 10.3390/app10103658.
C. Mythili and V. Kavitha, “Color Image Segmentation using ERKFCM,” 2012.
Z. Alom, C. Yakopcic, T. M. Taha, and V. K. Asari, Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net). 2018.
DOI: http://dx.doi.org/10.23960/jitet.v12i3.4331
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Publisher
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung
Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
Email: jitet@eng.unila.ac.id
Website : https://journal.eng.unila.ac.id/index.php/jitet