PENERAPAN ALGORITMA TEXTRANK DALAM MERANGKUM TEKS WORD DAN PDF

Authors

  • agustinus yovi siang Universitas Katolik Darma Cendika

DOI:

https://doi.org/10.23960/jitet.v12i1.3751

Abstract Views: 399 File Views: 437

Abstract

This review discusses the implementation of the TextRank algorithm for summarizing Word and PDF texts. Current technology enables rapid information growth but also raises issues regarding the lack of time to delve deeper into information. The TextRank algorithm is a web-based natural language processing method that employs an unsupervised approach and can be used to generate automatic text summaries. The search method used includes text preprocessing and the utilization of the TextRank algorithm. This article also explains how to use Google Colab and Google Drive to execute the TextRank algorithm for summarization. Steps for connecting Google Colab to Google Drive, installing Python libraries, retrieving data from Google Drive, and using the TextRank algorithm are also outlined in this article

Downloads

Download data is not yet available.

References

M. Danuri, “Development and transformation of digital technology,” Infokam, vol. XV, no. II, pp. 116–123, 2019.

R. F. Daud, I. Komunikasi, U. M. Kotabumi, and L. Utara, “Dampak Perkembangan Teknologi Komunikasi Terhadap Bahasa Indonesia,” J. Interak. J. Ilmu Komun., vol. 5, no. 2, pp. 252–269, 2021, doi: 10.30596/interaksi.v5i2.7539.

D. Andriani, I. Indriati, and M. T. Furqon, “Peringkasan Teks Otomatis Pada Artikel Berita Hiburan Berbahasa Indonesia Menggunakan Metode BM25,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2603–2610, 2019.

R. R. Putra, K. D. Evita, S. Pd, and M. Sc, “AUTOMATIC SUMMARIZATION TEXT ON MULTI DOCUMENT USING TEXTRANK Faculty of Engineering and Computer Science University Computer Indonesia.”

R. Mihalcea and P. Tarau, “TextRank: Bringing Order into Texts.”

R. Restu Putra, “Peringkasan Teks Otomatis Pada Multi Dokumen Menggunakan Textrank.” Universitas Komputer Indonesia, 2018.

Y. Marsyah, “Perbandingan Kinerja Algoritme TextRank dengan Algoritme LexRank pada Peringkasan Dokumen Bahasa Indonesia.”

Y. Liu and M. Lapata, “Text summarization with pretrained encoders,” arXiv Prepr. arXiv1908.08345, 2019.

K. Ivanedra and M. Mustikasari, “Implementasi Metode Recurrent Neural Network Pada Text Summarization Dengan Teknik Abstraktif,” J. Teknol. Inf. dan Ilmu Komput, vol. 6, no. 4, p. 377, 2019.

A. N. Ammar and S. Suyanto, “Peringkasan Teks Ekstraktif Menggunakan Binary Firefly Algorithm,” Indones. J. Comput., vol. 5, no. 2, pp. 31–42, 2020.

L. Pertiwi, “Penerapan Algoritma Text Mining, Steaming Dan Texrank Dalam Peringkasan Bahasa Inggris,” 2022.

N. Zhou, W. Shi, R. Liang, and N. Zhong, “Textrank keyword extraction algorithm using word vector clustering based on rough data-deduction,” Comput. Intell. Neurosci., vol. 2022, 2022.

N. R. Siahaan, R. Y. Tiffany, S. R. E. Sinaga, E. V. N. B. Naibaho, and M. I. Fahmi, “ANALISIS SENTIMEN ULASAN APLIKASI MEDIA SOSIAL WHATSAPP MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER,” J. Ilm. Betrik, vol. 14, no. 02 AGUSTUS, pp. 343–354, 2023.

O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Film Review Sentiment Analysis Using TF-IDF and Support Vector Machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022, doi: 10.46229/jifotech.v2i1.330.

M. Munthe, “Perancangan Aplikasi Silogisme Artikel Bahasa Batak Dengan Menerapkan Metode Textrank,” J. Comput. Informatics Res., vol. 1, no. 2, pp. 34–37, 2022.

S. Pratama and G. Alam, “Penerapan Algoritma Centroid-Based Summarization untuk Sistem Peringkasan Dokumen Berbahasa Indonesia,” Julyxxxx, vol. x, No.x, pp. 1–5.

Downloads

Published

2024-01-02

How to Cite

siang, agustinus yovi. (2024). PENERAPAN ALGORITMA TEXTRANK DALAM MERANGKUM TEKS WORD DAN PDF. Jurnal Informatika Dan Teknik Elektro Terapan, 12(1). https://doi.org/10.23960/jitet.v12i1.3751

Issue

Section

Articles