VIRTUAL SYNCHRONOUS GENERATOR UNTUK KOMPENSASI INERSIA PADA SISTEM MICROGRID
DOI:
https://doi.org/10.23960/jitet.v10i2.2436Abstract Views: 321 File Views: 294
Abstract
Semakin banyak pembangkit listrik terbarukan berbasis elektronika daya yang terintegrasi ke dalam jaringan listrik berakibat kurangnnya total inersia sistem. Sistem dengan inersia yang rendah akan rentan terhadap kehilangan kestabilan ketika terjadi usikan dalam sistem meskipun mungkin hanya berupa gangguan kecil. Konsep virtual synchronous generator dikembangkan untuk menambahkan inersia buatan menggunakan energy storage serta inverter pada distributed generation. Pada virtual synchronous generator, pengaturan frekuensi dapat dilakukan dengan mengatur besarnya daya yang melayani beban melalui energy storage. Pengaturan dilakukan dengan menerima input berupa selisih antara frekuensi yang terukur dan frekuensi nominal, kemudian memberikan respon daya pada microgrid melalui energy storage. Hasil penelitian menunjukkan, ketika beban lepas dari microgrid mengakibatkan frekuensi mengalami overshoot sesaat sehingga vsg merespon dengan menyimpan daya yang disuplai menggunakan energy strorage dan ketika beban masuk ke microgrid mengakibatkan frekuensi mengalami drop sesaat sehingga vsg merespon dengan memberikan daya tambahan melalui energy storage.Downloads
References
S. S. Thale, R. G. Wandhare, and V. Agarwal, “A Novel Reconfigurable
Microgrid Architecture With Renewable Energy Sources and Storage,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1805–1816, 2015, doi:
1109/TIA.2014.2350083.
B. Benjamin, B. Johnson, P. Denholm, and B. Hodge, “Achieving a 100% Renewable Grid,” no. April, pp. 61–73, 2017.
K. R. Vasudevan, V. K. Ramachandaramurthy, T. S. Babu, and A.
Pouryekta, “Synchronverter: A Comprehensive Review of Modifications, Stability Assessment, Applications and Future Perspectives,” IEEE Access, vol. 8, pp. 131565–131589, 2020.
H. Bevrani, T. Ise, and Y. Miura, “Virtual synchronous generators: A survey and new perspectives,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 244–254, 2014, doi: 10.1016/j.ijepes.2013.07.009.
P. Kundur, “Power System Stability And Control by Prabha Kundur,” McGrawHill, Inc. McGraw-Hill, New York, 1994.
T. Kerdphol, M. Watanabe, K ongesombut, and Y. Mitani, “SelfAdaptive Virtual Inertia Control-Based Fuzzy Logic to Improve Frequency
Stability of Microgrid with High Renewable Penetration,” IEEE Access,
vol. 7, no. June, pp. 76071–76083, 2019, doi: 10.1109/ACCESS.2019.2920886.
B. Yu, J. Guo, C. Zhou, Z. Gan, J. Yu, and F. Lu, “A Review on Microgrid Technology with Distributed Energy,” IEEE Access, no. May, pp. 143–146, 2017.
F. Katiraei and M. R. Iravani, “Power management strategies for a microgrid with multiple distributed generation units,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1821–1831, 2006, doi: 10.1109/TPWRS.2006.879260.
J. Liu and Y. Miura, “Comparison of Dynamic Characteristics Between Virtual Synchronous Generator and Droop Control in Inverter-Based Distributed Generators,” IEEE Access, no. May, 2016.
Putri, D. D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika dan Teknik Elektro Terapan, 10(1).
K. Sakimoto, Y. Miura, and T. Ise, “Stabilization of a power system including inverter-type distributed generators by a virtual synchronous generator,” Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi), vol. 187, no. 3, pp. 7–17, 2014, doi: 10.1002/eej.22426.
X. Zhang, W. Dong, G. Yao, and J. Zhang,“Test Method for Inertia and Damping of Photovoltaic Virtual Synchronous Generator Based on Power Angle Transfer Function,” 2nd IEEE Conf. Energy
Internet Energy Syst. Integr. EI2 2018 -Proc., 2018.