PERBANDINGAN METODE KNN DAN SVM DALAM KLASIFIKASI KEMATANGAN BUAH MANGGA BERDASARKAN CITRA HSV DAN FITUR STATISTIK

Mutmainnah Muchtar, Rafiqah Arjaliyah Muchtar

Abstract


This research compares the classification methods of K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) in identifying the ripeness level of mango fruit based on HSV images and statistical features. A total of 80 mango fruit images were categorized into two classes, namely "ripe" and "unripe" mango, with 40 images each. Testing was conducted using k-cross validation, revealing that KNN achieved an accuracy of 98.75%, while SVM reached 97.5%. KNN demonstrated superior and consistent performance, indicating its effectiveness in mango fruit ripeness classification. The study contributes to the advancement of automated systems for mango fruit processing, leveraging image technology and machine learning to support the agriculture and food industry.

Full Text:

PDF 876-884

References


H. Khotimah, N. Nafi’iyah, and Masruroh, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN,” ELTI Jurnal Elektronika, Listrik dan Teknologi Informasi Terapan, vol. 2, no. 1, pp. 1–7, Dec. 2019, [Online]. Available: https://ojs.politeknikjambi.ac.id/elti

A. Patriot, S. Pamungkas, N. Nafi’iyah, and N. Q. Nawafilah, “K-NN Klasifikasi Kematangan Buah Mangga Manalagi Menggunakan L*A*B dan Fitur Statistik,” Jurnal Ilmu Komputer dan Desain Komunikasi Visual, vol. 4, no. 1, 2019.

M. F. Mavi, Z. Husin, R. Badlishah Ahmad, Y. M. Yacob, R. S. M. Farook, and W. K. Tan, “Mango ripeness classification system using hybrid technique,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 2, pp. 859–868, May 2019, doi: 10.11591/ijeecs.v14.i2.pp859-868.

Y. E. Yana and N. Nafi’iyah, “Classification of Banana Types Based on Color, Texture, Image Shape Features Using SVM and KNN,” Research : Journal of Computer, Information System & Technology Management, vol. 4, no. 1, pp. 28–36, 2021.

J. Pardede, M. G. Husada, A. N. Hermana, and S. A. Rumapea, “Fruit ripeness based on RGB, HSV, HSL, L ab color feature using SVM,” in 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), IEEE, Nov. 2019, pp. 1–5.

M. Muchtar, N. Suciati, and C. Fatichah, “FRACTAL DIMENSION AND LACUNARITY COMBINATION FOR PLANT LEAF CLASSIFICATION,” Jurnal Ilmu Komputer dan Informasi, vol. 9, no. 2, p. 96, Jun. 2016, doi: 10.21609/jiki.v9i2.385.

Hasmawati, M. Muchtar, and J. Nangi, “APLIKASI PREDIKSI PENJUALAN BARANG MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN) (STUDI KASUS TUMAKA MART),” semanTIK, vol. 3, no. 2, pp. 151–160, 2017.

M. Muchtar, “Penggabungan Fitur Dimensi Fraktal dan Lacunarity untuk Klasifikasi Daun,” Institut Teknologi Sepuluh Nopember, Surabaya, 2015.

A. Ajmal, C. Hollitt, M. Frean, and H. Al-Sahaf, “A Comparison of RGB and HSV Colour Spaces for Visual Attention Models,” in 2018 International conference on image and vision computing New Zealand (IVCNZ), IEEE, 2018, pp. 1–6.

M. Sipan and R. K. Pramuyanti, “Analisis Citra Kuning Telur Berbasis Ekstraksi Ciri Statistika Orde Satu untuk Mengenali Jenis Telur Ayam Ras dan Ayam Kampung,” Elektrika, vol. 13, no. 2, pp. 74–78, Nov. 2021.

Y. P. Pasrun, M. Muchtar, A. N. Basyarah, and Noorhasanah, “Indonesian License Plate Detection Using Morphological Operation,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/797/1/012037.

M. Muchtar, “DETEKSI AREA KERUSAKAN PADA CITRA TERUMBU KARANG AKIBAT CORAL BLEACHING BERBASIS PENGOLAHAN CITRA DIGITAL,” Jurnal Innovation and Future Technology (IFTECH) P-ISSN, vol. 5, pp. 2656–1719, 2023.

A. Setiyorini, I. P. N. Purnama, J. Y. Sari, M. Muchtar, and E. Ngii, “Vehicle number plate identification using template matching algorithm for automatic parking system,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Apr. 2019, pp. 196–200. doi: 10.1145/3330482.3330483.

M. Muchtar, Y. P. Pasrun, R. Rasyid, N. Miftachurohmah, and M. Mardiawati, “PENERAPAN METODE NAÏVE BAYES DALAM KLASIFIKASI KESEGARAN IKAN BERDASARKAN WARNA PADA CITRA AREA MATA,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 1, Jan. 2024, doi: 10.23960/jitet.v12i1.3879.

R. Maulidiah, M. Muchtar, N. Aisyah Fitri, I. Asriani, M. Putri Yasmine, and P. Studi, “Pengelompokan Data Pertumbuhan dan Kontribusi Ekonomi Indonesia Menurut Provinsi Menggunakan Metode K-Means Clustering,” Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, vol. 6, no. 2, pp. 436–444, Jul. 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsk/index




DOI: http://dx.doi.org/10.23960/jitet.v12i2.4010

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung
Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung 35145
Email: jitet@eng.unila.ac.id
Website : https://journal.eng.unila.ac.id/index.php/jitet

Copyright (c) Jurnal Informatika dan Teknik Elektro Terapan (JITET)
pISSN: 2303-0577   eISSN: 2830-7062