Hardness enhancement of Al-Si alloys from sand casting with runner variations
DOI:
https://doi.org/10.23960/mech.v15i2.5280Abstract Views: 175 File Views: 135
Keywords:
Sand casting, Runner, Macrostructure, Microstructure, HardnessAbstract
Metal casting is one of the oldest and most efficient manufacturing techniques in producing metal components with complex shapes. One of the main challenges in the casting process is controlling the flow of molten metal so that it can fill the mold perfectly without producing defects. The channel in the casting mold is usually called a runner. The runner functions as a distribution channel for molten metal into the mold cavity. Optimal runner design settings are very important to prevent defects in the final product such as porosity, cold shut, and shrinkage. This study aims to identify the effect of runner shape variations on the quality of Al-Si casting. The method used in this study is a laboratory experimental method. The study began with preparing the tools and materials, the materials used in this study were used pistons. The piston melting temperature was carried out at 750°C. The results showed that the results of the cast product using a truncated cone-shaped runner (variation 1) were the best results. Macrostructural analysis showed that specimens in variation 1 had minimum casting defects and lower shrinkage compared to variation 2. Microstructural analysis showed that the cast product produced several phases. Meanwhile, the hardness number for specimen variation 1 reached 98 HRE.Downloads
References
S. Kristiadi, U. Lesmanah, and A. Raharjo, “Pengaruh Variasi Media Pendingin Terhadap Kekerasan dan Mikrostruktur Pada Pengecoran Aluminium 6061,” J. Tek. Mesin, pp. 6–13, 2023, [Online]. Available: https://jim.unisma.ac.id/index.php/jts/article/view/20665.
M. Xin, Z. Wang, B. Lu, and Y. Li, “Effects of different process parameters on microstructure evolution and mechanical properties of 2060 Al-Li alloy during vacuum centrifugal casting,” J. Mater. Res. Technol., vol. 21, pp. 54–68, 2022, doi: 10.1016/j.jmrt.2022.08.147.
F. O. Edoziuno, C. C. Nwaeju, A. A. Adediran, E. E. Nnuka, O. S. Adesina, and S. A. Nwose, “Factorial optimization and predictive modelling of properties of Ukpor clay bonded synthetic moulding sand prepared using River Niger silica sand,” Results Mater., vol. 10, no. May, p. 100194, 2021, doi: 10.1016/j.rinma.2021.100194.
Q. Zheng, B. Zhang, T. Chen, and J. Wu, “Achieving superior grain refinement efficiency for Al–Si casting alloys through a novel Al–La–B grain refiner,” J. Mater. Res. Technol., vol. 30, no. January, pp. 52–60, 2024, doi: 10.1016/j.jmrt.2024.03.070.
K. J. Hodder and R. J. Chalaturnyk, “Bridging additive manufacturing and sand casting: Utilizing foundry sand,” Addit. Manuf., vol. 28, no. June, pp. 649–660, 2019, doi: 10.1016/j.addma.2019.06.008.
C. Contatori et al., “Effect of Mg and Cu on microstructure, hardness and wear on functionally graded Al–19Si alloy prepared by centrifugal casting,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 15862–15873, 2020, doi: 10.1016/j.jmrt.2020.11.050.
F. F. Manurung and M. Mahadi, “Studi Eksperimental Pengaruh Variasi Temperatur Pemanasan Awal Cetakan Horizontal Centrifugal Casting pada Pengecoran Al-Si Terhadap Sifat Mekanik dan Cacat Coran,” J. Din., vol. 10, no. 2, pp. 46–52, 2022, doi: 10.32734/dinamis.v10i2.10270.
Z. H. Song, H. Y. Song, J. X. Liu, and H. T. Liu, “Tuning heterogeneous microstructure and improving mechanical properties of twin-roll strip cast low carbon steels by on-line heat treatments,” J. Mater. Res. Technol., vol. 30, no. 11, pp. 5894–5904, 2024, doi: 10.1016/j.jmrt.2024.04.143.
U. Chadha et al., “Phase Change Materials in Metal Casting Processes: A Critical Review and Future Possibilities,” Adv. Mater. Sci. Eng., vol. 2022, 2022, doi: 10.1155/2022/7520308.
S. Arianto and W. Berata, “Analisa Pengaruh Penggunaan Sistem Saluran Dengan Runner Berpenampang Tetap Dan Perlakuan Panas ( Normalizing- Quench Temper ) Terhadap Sifat Mekanik Kekerasan Dan Kekuatan Tarik Baja G17CrMo9-10 Hasil Pengecoran,” pp. 1–6, 2012.
B. B. Islami, K. Rahmat, D. Widodo, and I. Sukoco, “ANALISIS VARIASI SISTEM SALURAN TERHADAP CACAT CORAN DAN KEKUATAN BENDING RUNNER SUDU 20 TURBIN CROSS-FLOW DENGAN METODE SAND CASTING,” vol. 22, no. 2, pp. 45–49, 2022.
I. Polmear, “Aluminium Alloys--A Century of Age Hardening,” Mater. forum, vol. 28, pp. 1–14, 2004, doi: 7F6104775CD4BCE9E9D087602166B700.
Y. Li et al., “Alumina nanocrystalline ceramic by centrifugal casting,” J. Eur. Ceram. Soc., vol. 43, no. 4, pp. 1590–1596, 2023, doi: 10.1016/j.jeurceramsoc.2022.12.004.
J. Zygmuntowicz et al., “Properties of Al2O3/Ti/Ni composites fabricated via centrifugal slip casting under environmentally assessed conditions as a step toward climate-neutral society,” Ceram. Int., vol. 48, no. 15, pp. 21920–21933, 2022, doi: 10.1016/j.ceramint.2022.04.174.
G. Liu et al., “Recent advances and future trend of aluminum alloy melt purification: A review,” J. Mater. Res. Technol., vol. 28, no. October 2023, pp. 4647–4662, 2024, doi: 10.1016/j.jmrt.2024.01.024.
R. Vicente, K. Cesca, A. F. V. da Silva, D. de Oliveira, C. J. de Andrade, and A. Ambrosi, “Hierarchical membrane by centrifugal casting and effects of incorporating activated carbon as pore-former,” J. Eur. Ceram. Soc., vol. 43, no. 8, pp. 3447–3453, 2023, doi: 10.1016/j.jeurceramsoc.2023.02.040.
S. M. Ali, “The effect of reinforced SiC on the mechanical properties of the fabricated hypoeutectic Al-Si alloy by centrifugal casting,” Eng. Sci. Technol. an Int. J., vol. 22, no. 4, pp. 1125–1135, 2019, doi: 10.1016/j.jestch.2019.02.009.
M. R. de la Rocha, M. Virginie, A. Khodakov, L. D. Pollo, N. R. Marcílio, and I. C. Tessaro, “Preparation of alumina based tubular asymmetric membranes incorporated with coal fly ash by centrifugal casting,” Ceram. Int., vol. 47, no. 3, pp. 4187–4196, 2021, doi: 10.1016/j.ceramint.2020.09.296.
A. Royani, S. Prifiharni, G. Priyotomo, J. Triwardono, and S. Sundjono, “Performa Korosi Baja Karbon pada Uji Simulasi Pipa untuk Sistem Saluran Air Pendingin,” Metalurgi, vol. 34, no. 2, pp. 49–60, 2019.
X. Zhao et al., “Microstructure and mechanical properties of 304 stainless steel produced by interpass milling hybrid direct energy deposition-arc,” J. Mater. Res. Technol., vol. 27, no. October, pp. 3744–3756, 2023, doi: 10.1016/j.jmrt.2023.10.137.
R. Buntain, B. Alexandrov, and G. Viswanathan, “Characterization of the interpass microstructure in low alloy steel/Alloy 625 HW-GTAW narrow groove welds,” Mater. Charact., vol. 170, no. November 2019, p. 110638, 2020, doi: 10.1016/j.matchar.2020.110638.
Z. Ma et al., “Microstructural evolution and enhanced mechanical properties of Mg–Gd–Y–Zn–Zr alloy via centrifugal casting, ring-rolling and aging,” J. Magnes. Alloy., vol. 10, no. 1, pp. 119–128, 2022, doi: 10.1016/j.jma.2020.11.009.
B. Li et al., “Revealing the microstructural evolution and strengthening mechanism of Mg-5.5Gd-3Y-1Zn-0.5Mn alloy in centrifugal casting and subsequent hot rolling,” J. Alloys Compd., vol. 984, no. February, p. 173950, 2024, doi: 10.1016/j.jallcom.2024.173950.
M. H. Asiri, R. Soenoko, A. Suprapto, and Y. S. Irawan, “Effect of Spray Angle toward Microstructure Morphology and Hardness of Al-Mg Powder Produced from a Single Orifice Nozzle Water Atomizing,” vol. 9, no. 19, pp. 1583–1596, 2014.
A. Andoko, Y. A. Prasetya, P. Puspitasari, and T. B. Ariestoni, “The effects of artificial-aging temperature on tensile strength , hardness , micro- structure , and fault morphology in AlSiMg,” vol. 98, no. 2, pp. 49–55, 2020, doi: 10.5604/01.3001.0014.1480.
X. Huang, C. Liu, X. Lv, G. Liu, and F. Li, “Aluminum alloy pistons reinforced with SiC fabricated by centrifugal casting,” J. Mater. Process. Technol., vol. 211, no. 9, pp. 1540–1546, Sep. 2011, doi: 10.1016/J.JMATPROTEC.2011.04.006.
T. Aravinda, H. B. Niranjan, B. Satish Babu, and M. Udaya Ravi, “Solid State Diffusion Bonding Process-A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1013, no. 1, 2021, doi: 10.1088/1757-899X/1013/1/012011.
L. M. Rymer, L. Winter, K. Hockauf, and T. Lampke, “Artificial aging time influencing the crack propagation behavior of the aluminum alloy 6060 processed by equal channel angular pressing,” Mater. Sci. Eng. A, vol. 811, p. 141039, Apr. 2021, doi: 10.1016/J.MSEA.2021.141039.
L. González-Rovira, L. González-Souto, P. J. Astola, C. Bravo-Benítez, and F. J. Botana, “Assessment of the corrosion resistance of self-ordered anodic aluminum oxide (AAO) obtained in tartaric-sulfuric acid (TSA),” Surf. Coatings Technol., vol. 399, p. 126131, 2020, doi: 10.1016/j.surfcoat.2020.126131.
Sugiharto Sugiharto and Soejono Tjitro, “Pengaruh Kecepatan Putar Pada Proses Pengecoran Aluminium Centrifugal,” J. Tek. Mesin, vol. 6, no. 1, pp. 1–7, 2004, [Online]. Available: http://puslit2.petra.ac.id/ejournal/index.php/mes/article/view/16205.
B. Kumar, A. Joshi, K. K. S. Mer, L. Prasad, M. K. Pathak, and K. K. Saxena, “The impact of centrifugal casting processing parameters on the wear behaviour of Al alloy/Al2O3 functionally graded materials,” Mater. Today Proc., vol. 62, pp. 2780–2786, 2022, doi: 10.1016/j.matpr.2022.01.408.
Anne Zulfia, Ratna Juwita, Ari Uliana, I Nyoman Jujur, and Jarot Raharjo, “Proses Penuaan (Aging) pada Paduan Aluminium AA 333 Hasil Proses Sand Casting,” J. Tek. Mesin, vol. 12, no. 1, pp. 13–20, 2010, doi: 10.9744/jtm.12.1.13-20.
R. Fathi, A. Ma, B. Saleh, Q. Xu, and J. Jiang, “Investigation on mechanical properties and wear performance of functionally graded AZ91-SiCp composites via centrifugal casting,” Mater. Today Commun., vol. 24, no. March, p. 101169, 2020, doi: 10.1016/j.mtcomm.2020.101169.
Downloads
Published
How to Cite
Issue
Section
License

MECH is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 
							


