Mekanisme/Model Penguatan Komposit Bermatrik Logam dengan Berpenguat Partikel

Muhammad Budi Haryono, Wikan Budi Utami

Abstract


Penggunaan partikel sebagai bahan penguat dari komposit logam memiliki keunggulan untuk meningkatkan kekuatan dan modulus dari komposit.  Pengaruh dari mekanisme penguatan disebabkan oleh adanya penguat partikel pada sifat mekanik dari komposit. Mekanisme penguatan pada komposit didiskusikan menjadi: model penguatan pada level macro adalah law of mixtures, dan pada model penguatan level nano yaitu penguatan dislokasi. Pada model penguatan level nano yang berbasis penguatan dislokasi terbagi menjadi model Orowan, model forest hardening, model elastic peg, dan model punching untuk menjelaskan dengan baik penguatan yang diamati pada MMC (metal matrix composites) berpenguat partikel. Regangan CTE mismatch merupakan kunci utama untuk peningkatan tegangan luluh pada komposit.

Keywords


Partikel, komposit, mekanisme penguatan

Full Text:

PDF

References


Y. Su et al., 2014, “Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites,” Mater. Sci. Eng. A, vol. 597, pp. 359–369.

R. A. Varin, 2002, “Intermetallic-reinforced light-metal matrix in-situ composites,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 33, no. 1, pp. 193–201.

T. I. B. A.- Composites, 2017, “Influence of Tib 2 Particles on Aging Behavior of in-Situ,” no. August, pp. 20–25.

G. CHEN, J. WAN, N. HE, H. ming ZHANG, F. HAN, and Y. min ZHANG, 2018, “Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 28, no. 12, pp. 2395–2400.

W. S. Miller, and F. J. Humphreys, 1990, "Strengthening mechanisms in particulate metal matrix composites," Scripta metallurgica et materialia, vol.25, pp. 33-38.

N. M. Chelliah, H. Singh, and M. K. Surappa, 2017, “Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing,” Mater. Chem. Phys., vol. 194, pp. 65–76.

S. J. Wang, G. Q. Wu, Z. H. Ling, and Z. Huang, 2009, “Microstructure and mechanical properties of YAl2 reinforced MgLiAl composite,” Mater. Sci. Eng. A, vol. 518, no. 1–2, pp. 158–161.

S. J. Wang, G. Q. Wu, R. H. Li, G. X. Luo, and Z. Huang, 2006, “Microstructures and mechanical properties of 5 wt.% Al2Yp/Mg-Li composite,” Mater. Lett., vol. 60, no. 15, pp. 1863–1865.

W. Xu, X. Wu, T. Honma, S. P. Ringer, and K. Xia, 2009, “Nanostructured Al-Al2O3 composite formed in situ during consolidation of ultrafine Al particles by back pressure equal channel angular pressing,” Acta Mater., vol. 57, no. 14, pp. 4321–4330.

K. Tohgo, Y. Itoh, and Y. Shimamura, 2010, “A constitutive model of particulate-reinforced composites taking account of particle size effects and damage evolution,” Compos. Part A Appl. Sci. Manuf., vol. 41, no. 2, pp. 313–321.

X. Deng and N. Chawla, 2006 “Modeling the effect of particle clustering on the mechanical behavior of SiC particle reinforced Al matrix composites,” J. Mater. Sci., vol. 41, no. 17, pp. 5731–5734.

L. J. Huang, L. Geng, and H. X. Peng, 2015 “Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?,” Prog. Mater. Sci., vol. 71, pp. 93–168.

R. D. Evans and J. D. Boyd, 2003, “Near-interface microstructure in a SiC/Al composite,” Scr. Mater., vol. 49, no. 1 SPEC., pp. 59–63.

J. C. Shao, B. L. Xiao, Q. Z. Wang, Z. Y. Ma, and K. Yang, 2011, “An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites,” Compos. Sci. Technol., vol. 71, no. 1, pp. 39–45.

M. Taya, 1991, "Strengthening mechanism of metal matrix composite," Materials Transactions, vol. 32, pp. 1-19 .

G. M. Rassweiler, and W. L. Grube, 1959, "E.Orowan: Internal stresses and fatigue in metals," Elsevier Sci, pp. 59-80.

P. Taylor and M. F. Ashby, 2012, “Work hardening of dispersion- hardened crystals,”, pp. 37–41, 2006.

O. F. Crystals and B. Y. 1970, Non-deforming, “Particles and,” Arbeit.

R. J. Arsenault and N. Shi, 1986, “Dislocation generation due to differences between the coefficients of thermal expansion,” Mater. Sci. Eng., vol. 81, no. C, pp. 175–187.

S. M. Hong, E. K. Park, J. J. Park, M. K. Lee, and J. Gu Lee, 2015, “Effect of nano-sized TiC particle addition on microstructure and mechanical properties of SA-106B carbon steel,” Mater. Sci. Eng. A, vol. 643, pp. 37–46.

M. Hadian, H. Shahrajabian, and M. Rafiei, 2019, “Mechanical properties and microstructure of Al/(TiC+TiB 2 ) composite fabricated by spark plasma sintering,” Ceram. Int., vol. 45, no. 9, pp. 12088–12092.

Y. Zhou, S. Wen, C. Wang, L. Duan, Q. Wei, and Y. Shi, 2019 “Effect of TiC content on the Al-15Si alloy processed by selective laser melting: Microstructure and mechanical properties,” Opt. Laser Technol., vol. 120, no. July, p. 105719.




DOI: http://dx.doi.org/10.23960/mech.v11.i1.202001

Refbacks

  • There are currently no refbacks.


Contact and E-Mail : (Phone) 0721-704947, (E-Mail) : Jurnal.Mechanical@eng.unila.ac.id


Statcounter Journal Mech
Flag Counter
Creative Commons License
MECH is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.